-- | -- Invariant monoidal functors. -- -- This roughly corresponds to "Control.Applicative", but exposes a non-overlapping API so can be imported unqualified. It does, however, use operators similar to those provided by contravariant. {-# LANGUAGE CPP, Safe, FlexibleInstances #-} module Control.Invertible.Monoidal ( -- * Functor (>$<) -- * Monoidal , Monoidal(..) , (>*), (*<) -- ** Tuple combinators , liftI2 , liftI3 , liftI4 , liftI5 , (>*<<) , (>*<<<) , (>*<<<<) , (>>*<) , (>>>*<) , (>>>>*<) , (>>*<<) , pureI , sequenceMaybesI , mapMaybeI -- * MonoidalAlt , MonoidalAlt(..) , possible , defaulting , while ) where import Prelude import Control.Arrow ((&&&), (***)) import Data.Invertible.Bijection import qualified Data.Invertible as I -- |Another synonym for 'fmap' to match other operators in this module. (>$<) :: I.Functor f => a <-> b -> f a -> f b (>$<) = I.fmap infixl 4 >$< -- |Lax invariant monoidal functor. -- This roughly corresponds to 'Applicative', which, for covariant functors, is equivalent to a monoidal functor. -- Invariant functors, however, may admit a monoidal instance but not applicative. class I.Functor f => Monoidal f where -- |Lift a unit value, analogous to @'Control.Applicative.pure' ()@ (but also like @const ()@). unit :: f () -- |Merge two functors into a tuple, analogous to @'Control.Applicative.liftA2' (,)@. (Sometimes known as @**@.) (>*<) :: f a -> f b -> f (a, b) -- | Sequence actions, discarding/inhabiting the unit value of the first argument. (*<) :: Monoidal f => f () -> f a -> f a (*<) = liftI2 I.snd -- | Sequence actions, discarding/inhabiting the unit value of the second argument. (>*) :: Monoidal f => f a -> f () -> f a (>*) = liftI2 I.fst infixl 4 >*, >*<, *< -- |Lift an (uncurried) bijection into a monoidal functor. liftI2 :: Monoidal f => ((a, b) <-> c) -> f a -> f b -> f c liftI2 f a b = f >$< (a >*< b) liftI3 :: Monoidal f => ((a, b, c) <-> d) -> f a -> f b -> f c -> f d liftI3 f a b c = f >$< (a >*< b >>*< c) liftI4 :: Monoidal f => ((a, b, c, d) <-> e) -> f a -> f b -> f c -> f d -> f e liftI4 f a b c d = f >$< (a >*< b >>*< c >>>*< d) liftI5 :: Monoidal f => ((a, b, c, d, e) <-> g) -> f a -> f b -> f c -> f d -> f e -> f g liftI5 f a b c d e = f >$< (a >*< b >>*< c >>>*< d >>>>*< e) (>>*<) :: Monoidal f => f (a, b) -> f c -> f (a, b, c) (>>*<) = liftI2 I.flatten2_1 (>>>*<) :: Monoidal f => f (a, b, c) -> f d -> f (a, b, c, d) (>>>*<) = liftI2 I.flatten3_1 (>>>>*<) :: Monoidal f => f (a, b, c, d) -> f e -> f (a, b, c, d, e) (>>>>*<) = liftI2 I.flatten4_1 infixl 4 >>*<, >>>*<, >>>>*< (>*<<) :: Monoidal f => f a -> f (b, c) -> f (a, b, c) (>*<<) = liftI2 I.flatten1_2 (>*<<<) :: Monoidal f => f a -> f (b, c, d) -> f (a, b, c, d) (>*<<<) = liftI2 I.flatten1_3 (>*<<<<) :: Monoidal f => f a -> f (b, c, d, e) -> f (a, b, c, d, e) (>*<<<<) = liftI2 I.flatten1_4 infixr 3 >*<<, >*<<<, >*<<<< (>>*<<) :: Monoidal f => f (a, b) -> f (c, d) -> f (a, b, c, d) (>>*<<) = liftI2 I.flatten2_2 infix 3 >>*<< -- |A constant monoidal (like 'Control.Applicative.pure'), which always produces the same value and ignores everything. pureI :: Monoidal f => a -> f a pureI a = I.const a >$< unit -- |Sequence (like 'Control.Applicative.sequenceA') and filter (like 'Data.Maybe.catMaybes') a list of monoidals, producing the list of non-'Nothing' values. -- Shorter input lists pad with 'Nothing's and longer ones are ignored. sequenceMaybesI :: Monoidal f => [f (Maybe a)] -> f [a] sequenceMaybesI [] = pureI [] sequenceMaybesI (x:l) = liftI2 I.consMaybe x (sequenceMaybesI l) -- |Map each element to a 'Maybe' monoidal and sequence the results (like 'Control.Applicative.traverse' and 'Data.Maybe.mapMaybe'). mapMaybeI :: Monoidal f => (a -> f (Maybe b)) -> [a] -> f [b] mapMaybeI = (sequenceMaybesI .) . map -- |Monoidal functors that allow choice. class Monoidal f => MonoidalAlt f where -- |Associative binary choice. (>|<) :: f a -> f b -> f (Either a b) infixl 3 >|< -- |Analogous to 'Control.Applicative.optional'. possible :: MonoidalAlt f => f a -> f (Maybe a) possible f = I.lft >$< (f >|< unit) -- |Return a default value if a monoidal functor fails, and only apply it to non-default values. defaulting :: (MonoidalAlt f, Eq a) => a -> f a -> f a defaulting a f = I.fromMaybe a >$< possible f -- |Repeatedly apply a monoidal functor until it fails. Analogous to 'Control.Applicative.many'. while :: MonoidalAlt f => f a -> f [a] while f = I.cons >$< possible (f >*< while f) instance Monoidal (Bijection (->) ()) where unit = I.id -- |Uses the 'Monoid' instance to combine '()'s. (ua :<->: au) >*< (ub :<->: bu) = ua &&& ub :<->: uncurry mappend . (au *** bu)