
Jacinda - Functional Stream Processing Language

Vanessa McHale

Contents

Tutorial 1

Tour de Force . 2

Patterns + Implicits, Streams . 2

Fold . 3

Map . 3

Functions . 3

Zips . 4

Scans . 4

Prior . 4

Filter . 5

Parting Shots . 5

Libraries 5

Data Processing 6

CSV Processing . 6

Vaccine Effectiveness . 6

Machinery 7

Tutorial

Jacinda has fluent support for filters, maps and folds that are familiar to func-
tional programmers; the syntax in particular is derivative of J or APL.

1

Jacinda is at its best when piped through other command-line tools (including
awk).

Tour de Force

Patterns + Implicits, Streams

Awk is oriented around patterns and actions. Jacinda has support for a similar
style: one defines a pattern and an expression defined by the lines that this
matches, viz.

{% <pattern>}{<expr>}

This defines a stream of expressions.

One can search a file for all occurrences of a string:

ja ’{% /Bloom/}{‘0}’ -i ulysses.txt

‘0 here functions like $0 in awk: it means the whole line.

Thus, the above functions like ripgrep. We could imitate fd with, say:

ls -1 -R | ja ’{% /\.hs$/}{‘0}’

This would print all Haskell source files in the current directory.

There is another form,

{<expr>}{<expr>}

where the initial expression is of boolean type, possibly involving the line context.
An example:

{#‘0>110}{‘0}

This defines a stream of lines that are more than 110 bytes (# is ‘tally’, it returns
the length of a string).

There is also a syntax that defines a stream on all lines,

{|<expr>}

So {|``0} would define a stream of text corresponding to the lines in the file.

2

Fold

Then, count lines with the word “Bloom”:

ja ’(+)|0 {% /Bloom/}{1}’ -i ulysses.txt

Note the fold, |. It is a ternary operator taking (+), 0, and {% /Bloom/}{1} as
arguments. The general syntax is:

<expr>|<expr> <expr>

It takes a binary operator, a seed, and a stream and returns an expression.

Map

Suppose we wish to count the lines in a file. We have nearly all the tools to do
so:

(+)|0 {|1}

This uses aforementioned {|<expr>} syntax. It this defines a stream of 1s for
each line, and takes its sum.

We could also do the following:

(+)|0 [:1"$0

$0 is the stream of all lines. [: is the constant operator, a -> b -> a, so [:1
sends anything to 1.

" maps over a stream. So the above maps 1 over every line and takes the sum.

Functions

We could abstract away sum in the above example like so:

let val
sum := [(+)|0 x]

in sum {% /Bloom/}{1} end

In Jacinda, one can define functions with a dfn syntax in, like in APL. We do
not need to bind x; the variables x and y are implicit. Since [(+)|0 x] only
mentions x, it is treated as a unary function.

Note also that := is used for definition. The general syntax is

let (val <name> := <expr>)* in <expr> end

3

https://help.dyalog.com/latest/#Language/Defined%20Functions%20and%20Operators/DynamicFunctions/Dynamic%20Functions%20and%20Operators.htm

Lambdas There is syntactical support for lambdas;

\x. (+)|0 x

would be equivalent to the above example.

Zips

The syntax is:

, <expr> <expr> <expr>

One could (for instance) calculate population density:

, (%) $5:f $6:f

The postfix :f parses the column as an integer.

Scans

The syntax is:

<expr> ^ <expr> <expr>

Scans are like folds, except that the intermediate value is tracked at each step.
One could define a stream containing line numbers for a file with:

(+)^0 [:1"$0

(this is the same as {|ix})

Prior

Jacinda has a binary operator, \., like q’s each prior or J’s dyadic infix. One
could write:

succDiff := [(-) \. x]

to track successive differences.

4

https://code.kx.com/q/ref/maps/#each-prior
https://code.jsoftware.com/wiki/Vocabulary/bslash#dyadic

Currying Jacinda allows partially applied (curried) functions; one could write

succDiff := ((-)\.)

Filter

We can filter an extant stream with #., viz.

(>110) #. $0:i

#. takes as its left argument a unary function returning a boolean.

Parting Shots

or := [(||)|#f x]

and := [(&)|#t x]

count := [(+)|0 [:1"x]

#t and #f are boolean literals.

Libraries

There is a syntax for functions:

fn sum(x) :=
(+)|0 x;

fn drop(n, str) :=
let val l := #str

in substr str n l end;

Note the := and also the semicolon at the end of the expression that is the
function body.

Since Jacinda has support for higher-order functions, one could write:

fn any(p, xs) :=
(||)|#f p"xs;

fn all(p, xs) :=
(&)|#t p"xs;

5

Data Processing

CSV Processing

We can process .csv data with the aid of csvformat, viz.

csvformat file.csv -D’|’ | ja -F’\|’ ’$1’

For “well-behaved” csv data, we can simply split on ,:

ja -F, ’$1’

Vaccine Effectiveness

As an example, NYC publishes weighted data on vaccine breakthroughs.

We can download it:

curl -L https://raw.githubusercontent.com/nychealth/coronavirus-data/master/latest/now-weekly-breakthrough.csv -o /tmp/now-weekly-breakthrough.csv

And then process its columns with ja

ja ’,[1.0-x%y] {ix>1}{‘5:f} {ix>1}{‘11:f}’ -F, -i /tmp/now-weekly-breakthrough.csv

As of writing:

0.8793436293436293
0.8524501884760366
0.8784741144414169
0.8638045891931903
0.8644207066557108
0.8572567783094098
0.8475274725274725
0.879263670817542
0.8816131830008673
0.8846732911773563
0.8974564390146205
0.9692181407757029

This extracts the 5th and 11th columns (discarding headers), and then computes
effectiveness.

6

https://csvkit.readthedocs.io/en/1.0.6/scripts/csvformat.html
https://github.com/nychealth/coronavirus-data/blob/master/latest/now-weekly-breakthrough.csv

Machinery

Under the hood, Jacinda has typeclasses, inspired by Haskell. These are used to
disambiguate operators and witness with an implementation.

7

	Tutorial
	Tour de Force
	Patterns + Implicits, Streams
	Fold
	Map
	Functions
	Zips
	Scans
	Prior
	Filter
	Parting Shots

	Libraries
	Data Processing
	CSV Processing
	Vaccine Effectiveness

	Machinery

