
Jacinda - Functional Stream Processing Language

Vanessa McHale

Contents

Tutorial 2

Language . 2

Patterns + Implicits, Streams . 2

Fold . 3

Map . 3

Functions . 4

Zips . 4

Scans . 4

Prior . 5

Deduplicate . 5

Filter . 5

Formatting Output . 5

Libraries . 6

System Interaction . 7

Examples 7

Error Span . 7

Vim Tags . 9

Unix Command-Line Tools . 9

grep . 9

wc . 10

head . 10

uniq . 10

1

nl . 11

Data Processing . 11

CSV Processing . 11

Machinery 12

Functor . 12

IsPrintf . 12

Tutorial

Jacinda has fluent support for filters, maps and folds that are familiar to func-
tional programmers; the syntax in particular is derivative of J or APL.

Jacinda is at its best when piped through other command-line tools (including
awk).

Language

Patterns + Implicits, Streams

Awk is oriented around patterns and actions. Jacinda has support for a similar
style: one defines a pattern and an expression defined by the lines that this
matches, viz.

{% <pattern>}{<expr>}

This defines a stream of expressions.

One can search a file for all occurrences of a string:

ja ’{% /Bloom/}{‘0}’ -i ulysses.txt

‘0 here functions like $0 in awk: it means the whole line.

Thus, the above functions like ripgrep. We could imitate fd with, say:

ls -1 -R | ja ’{% /\.hs$/}{‘0}’

This would print all Haskell source files in the current directory.

There is another form,

2

{<expr>}{<expr>}

where the initial expression is of boolean type, possibly involving the line context.
An example:

{#‘0>110}{‘0}

This defines a stream of lines that are more than 110 bytes (# is ‘tally’, it returns
the length of a string).
There is also a syntax that defines a stream on all lines,

{|<expr>}

So {|``0} would define a stream of text corresponding to the lines in the file.

Fold

Then, count lines with the word “Bloom”:

ja ’(+)|0 {% /Bloom/}{1}’ -i ulysses.txt

Note the fold, |. It is a ternary operator taking (+), 0, and {% /Bloom/}{1} as
arguments. The general syntax is:

<expr>|<expr> <expr>

It takes a binary operator, a seed, and a stream and returns an expression.
There is also |>, which folds without a seed.

Map

Suppose we wish to count the lines in a file. We have nearly all the tools to do
so:

(+)|0 {|1}

This uses aforementioned {|<expr>} syntax. It this defines a stream of 1s for
each line, and takes its sum.
We could also do the following:

(+)|0 [:1"$0

$0 is the stream of all lines. [: is the constant operator, a -> b -> a, so [:1
sends anything to 1.
" maps over a stream. So the above maps 1 over every line and takes the sum.

3

Functions

We could abstract away sum in the above example like so:

let val
sum := [(+)|0 x]

in sum {% /Bloom/}{1} end

In Jacinda, one can define functions with a dfn syntax in, like in APL. We do
not need to bind x; the variables x and y are implicit. Since [(+)|0 x] only
mentions x, it is treated as a unary function.
Note also that := is used for definition. The general syntax is

let (val <name> := <expr>)* in <expr> end

Lambdas There is syntactical support for lambdas;

\x. (+)|0 x

would be equivalent to the above example.

Zips

The syntax is:

, <expr> <expr> <expr>

One could (for instance) calculate population density:

, (%) $5:f $6:f

The postfix : parses the column based on inferred type; here it parses as a float.

Scans

The syntax is:

<expr> ^ <expr> <expr>

Scans are like folds, except that the intermediate value is tracked at each step.
One could define a stream containing line numbers for a file with:

(+)^0 [:1"$0

(this is the same as {|ix})

4

https://help.dyalog.com/latest/#Language/Defined%20Functions%20and%20Operators/DynamicFunctions/Dynamic%20Functions%20and%20Operators.htm

Prior

Jacinda has a binary operator, \., like q’s each prior or J’s dyadic infix. One
could write:

succDiff := [(-) \. x]

to track successive differences.

Currying Jacinda allows partially applied (curried) functions; one could write

succDiff := ((-)\.)

Deduplicate

Jacinda has stream deduplication built in with the ~. operator.

~.$0

This is far better than sort | uniq as it preserves order; it is equivalent to
!a[$0]++ in awk.

Filter

We can filter an extant stream with #., viz.

(>110) #. $1:i

#. takes as its left argument a unary function returning a boolean.

[#x>110] #. $0

would filter to those lines >110 bytes wide.

Formatting Output

One can format output with sprintf, which works like printf in Awk or C.

As an example,

{|sprintf ’%i: %s’ (ix.‘0)}

would display a file annotated with line numbers. Note the atypical syntax for
tuples, we use . as a separator rather than ,.

5

https://code.kx.com/q/ref/maps/#each-prior
https://code.jsoftware.com/wiki/Vocabulary/bslash#dyadic

Libraries

There is a syntax for functions:

fn sum(x) :=
(+)|0 x;

fn drop(n, str) :=
let val l := #str
in substr str n l end;

Note the := and also the semicolon at the end of the expression that is the
function body.

Since Jacinda has support for higher-order functions, one could write:

fn any(p, xs) :=
(||)|#f p"xs;

fn all(p, xs) :=
(&)|#t p"xs;

File Includes One can @include files.

As an example, one could write:

@include’lib/string.jac’

fn path(x) :=
intercalate ’\n’ (splitc x ’:’);

path"$0

intercalate is defined in lib/string.jac.

Example Suppose we want to mimic some functionality of sed - we’d like
to replace some regular expression with a string (no capture groups, only first
replacement per line)

@include’prelude/fn.jac’

fn replace1(re, str, line) :=
let
val insert := \line. \str. \ixes.
take (ixes->1) line + str + drop (ixes->2) line

in option line (insert line str) (match line re) end;

6

Then we could trim whitespace from a file with

@include’lib/sed.jac’

(replace1 /\s+$/ ’’)"$0

Jacinda does not modify files in-place so one would need to use sponge perhaps:

ja run trimwhitespace.jac -i FILE | sponge FILE

Parting Shots

or := [(||)|#f x]

and := [(&)|#t x]

count := [(+)|0 [:1"x]

#t and #f are boolean literals.

System Interaction

Jacinda ignores any line beginning with #!, thus one could write a script like so:

#!/usr/bin/env -S ja run

fn path(x) :=
([x+’\n’+y])|’’ (splitc x ’:’);

path"$0

Examples

Error Span

Suppose we wish to extract span information from compiler output for edi-
tor integration. Vim ships with a similar script, mve.awk, to present column
information in a suitable format.

7

https://joeyh.name/code/moreutils/

src/Jacinda/Backend/TreeWalk.hs:319:58: error:
• The constructor ‘TyArr’ should have 3 arguments, but has been given 4
• In the pattern:

TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _
In the pattern:
TyArr _ _ (TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _)

In the pattern:
TBuiltin (TyArr _ _

(TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _))
Fold

|
319 | eWith re i (EApp _ (EApp _ (EApp _ (TBuiltin (TyArr _ _ (TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _)) Fold) op) seed) stream) = foldWithCtx re i op seed stream

| ^^

To get what we want, we use match, which returns indices that match a regex -
in our case, /\ˆ+/, which spans the error location.

From the manpages, we see it has type

match : Str -> Regex -> Option (Int . Int)

:set fs:=/\|/;

fn printSpan(str) :=
(sprintf ’%i-%i’)"(match str /\^+/);

printSpan:?{% /\|/}{‘2}

Our program uses | as a file separator, thus ‘2 will present us with:

^^

which is exactly the relevant bit.

First, note that " is used to map (sprintf '%i-%i') over (match ...). This
works because match returns an Option, which is a functor. The builtin :? is
mapMaybe. Thus, we define a stream

printSpan:?{% /\|/}{‘2}

which only collects when printSpan returns a Some.

8

https://hackage.haskell.org/package/witherable-0.4.2/docs/Witherable.html#v:mapMaybe

Vim Tags

Suppose we wish to generate vim tag files for our Jacinda programs. According
to :help tags-file-format the desired format is

{tagname} {TAB} {tagfile} {TAB} {tagaddress}

where {tagaddress} is an ex command. In fact, addresses defined by regular
expressions are preferable as they become outdated less quickly.

As an example, suppose we have the function declaration

fn sum(x) :=
(+)|0 x;

Then we need to extract sum and give a regex that points to where it is defined.

To do so:

fn mkEx(s) :=
’/^’ + s + ’$/;’;

fn processStr(s) :=
let
val line := split s /[\(]+/
val outLine := sprintf ’%s\t%s\t%s’ (line.2 . fp . mkEx s)

in outLine end;

processStr"{%/fn +[[:lower:]][[:latin:]]*.*:=/}{‘0}

Note the builtin split; according to the manpages it has type

split : Str -> Regex -> List Str

.2 is the syntax for accessing a list - line.2 extracts the second element.

Unix Command-Line Tools

To get a flavor of Jacinda, see how it can be used in place of familiar tools:

grep

ja ’{%/the/}{‘0}’ -i FILE

9

wc

To count lines:

(+)|0 [:1"$0

or

[y]|0 {|ix}

To count bytes in a file:

(+)|0 [#x+1]"$0

or

(+)|0 {|#‘0+1}

head

To emulate head -n60, for instance:

{ix<=60}{‘0}

uniq

fn step(acc, this) :=
if this = acc->1
then (this . None)
else (this . Some this);

(->2):?step^(’’.None) $0

This tracks the previous line in a state and only adds the current line to the
stream if it is different.

10

nl

We can emulate nl -b a with:

{|sprintf ’ %i %s’ (ix.‘0)}

To count only non-blank lines:

fn empty(str) :=
#str = 0;

fn step(acc, line) :=
if empty line
then (acc->1 . ’’)
else (acc->1 + 1 . line);

fn process(x) :=
if !empty (x->2)
then sprintf ’ %i\t%s’ x
else ’’;

process"step^(0 . ’’) $0

Data Processing

CSV Processing

We can process .csv data with the aid of csvformat, viz.

csvformat file.csv -D’|’ | ja -F’\|’ ’$1’

For “well-behaved” csv data, we can simply split on ,:

ja -F, ’$1’

Vaccine Effectiveness As an example, NYC publishes weighted data on
vaccine breakthroughs.

We can download it:

curl -L https://raw.githubusercontent.com/nychealth/coronavirus-data/master/latest/now-weekly-breakthrough.csv -o /tmp/now-weekly-breakthrough.csv

And then process its columns with ja

11

https://csvkit.readthedocs.io/en/1.0.6/scripts/csvformat.html
https://github.com/nychealth/coronavirus-data/blob/master/latest/now-weekly-breakthrough.csv

ja ’,[1.0-x%y] {ix>1}{‘5:} {ix>1}{‘11:}’ -F, -i /tmp/now-weekly-breakthrough.csv

As of writing:

0.8793436293436293
0.8524501884760366
0.8784741144414169
0.8638045891931903
0.8644207066557108
0.8572567783094098
0.8475274725274725
0.879263670817542
0.8816131830008673
0.8846732911773563
0.8974564390146205
0.9692181407757029

This extracts the 5th and 11th columns (discarding headers), and then computes
effectiveness.

Machinery

Under the hood, Jacinda has typeclasses, inspired by Haskell. These are used to
disambiguate operators and witness with an implementation.

The language does not allow custom typeclasses.

Functor

The map operator " is works on all functors, not just streams. Stream, List,
and Option are instances.

IsPrintf

The IsPrintf typeclass is used to type sprintf; strings, integers, floats,
booleans, and tuples of such are members.

sprintf ’%i’ 3

and

sprintf ’%s-%i’ (’str’ . 2)

are both valid.

12

	Tutorial
	Language
	Patterns + Implicits, Streams
	Fold
	Map
	Functions
	Zips
	Scans
	Prior
	Deduplicate
	Filter
	Formatting Output
	Libraries

	System Interaction

	Examples
	Error Span
	Vim Tags
	Unix Command-Line Tools
	grep
	wc
	head
	uniq
	nl

	Data Processing
	CSV Processing

	Machinery
	Functor
	IsPrintf

