Copyright | (c) Stéphane Laurent 2024 |
---|---|
License | GPL-3 |
Maintainer | laurent_step@outlook.fr |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Math.Combinatorics.Kostka
Contents
Description
This module provides some functions to compute Kostka-Jack numbers, i.e. Kostka numbers with a Jack parameter, possibly skew.
Synopsis
- kostkaNumbersWithGivenLambda :: Partition -> Rational -> Map Partition Rational
- kostkaNumbers :: Int -> Rational -> Map Partition (Map Partition Rational)
- symbolicKostkaNumbersWithGivenLambda :: Partition -> Map Partition RatioOfQSprays
- symbolicKostkaNumbers :: Int -> Map Partition (Map Partition RatioOfQSprays)
- skewKostkaNumbers :: Rational -> Partition -> Partition -> Map Partition Rational
- symbolicSkewKostkaNumbers :: Partition -> Partition -> Map Partition RatioOfQSprays
Kostka numbers
kostkaNumbersWithGivenLambda Source #
Kostka numbers \(K_{\lambda,\mu}(\alpha)\) with Jack parameter, or Kostka-Jack numbers, for a given integer partition \(\lambda\) and a given Jack parameter \(\alpha\). These are the ordinary Kostka numbers when \(\alpha=1\). The function returns a map whose keys represent the partitions \(\mu\) and the value attached to a partition \(\mu\) is the Kostka-Jack number \(K_{\lambda,\mu}(\alpha)\). The partition \(\mu\) is included in the keys of this map if and only if \(K_{\lambda,\mu}(\alpha) \neq 0\). The Kostka-Jack number \(K_{\lambda,\mu}(\alpha)\) is the coefficient of the monomial symmetric polynomial \(m_\mu\) in the expression of the \(P\)-Jack polynomial \(P_\lambda(\alpha)\) as a linear combination of monomial symmetric polynomials.
Arguments
:: Int | weight of the partitions |
-> Rational | Jack parameter |
-> Map Partition (Map Partition Rational) |
Kostka numbers \(K_{\lambda,\mu}(\alpha)\) with Jack parameter, or Kostka-Jack numbers, for a given weight of the partitions \(\lambda\) and \(\mu\) and a given Jack parameter \(\alpha\). These are the ordinary Kostka numbers when \(\alpha=1\). The function returns a map whose keys represent the partitions \(\lambda\) and the value attached to a partition \(\lambda\) represents the map \(\mu \mapsto K_{\lambda,\mu}(\alpha)\) where the partition \(\mu\) is included in the keys of this map if and only if \(K_{\lambda,\mu}(\alpha) \neq 0\). The Kostka-Jack number \(K_{\lambda,\mu}(\alpha)\) is the coefficient of the monomial symmetric polynomial \(m_\mu\) in the expression of the \(P\)-Jack polynomial \(P_\lambda(\alpha)\) as a linear combination of monomial symmetric polynomials.
symbolicKostkaNumbersWithGivenLambda Source #
Arguments
:: Partition | the integer partition |
-> Map Partition RatioOfQSprays |
Kostka-Jack numbers \(K_{\lambda,\mu}(\alpha)\) with symbolic Jack parameter \(\alpha\) for a given integer partition \(\lambda\). This function returns a map whose keys represent the partitions \(\mu\) and the value attached to a partition \(\mu\) is the Kostka-Jack number \(K_{\lambda,\mu}(\alpha)\). The partition \(\mu\) is included in the keys of this map if and only if \(K_{\lambda,\mu}(\alpha) \neq 0\).
symbolicKostkaNumbers Source #
Kostka-Jack numbers \(K_{\lambda,\mu}(\alpha)\) with symbolic Jack parameter \(\alpha\) for a given weight of the partitions \(\lambda\) and \(\mu\). This function returns a map whose keys represent the partitions \(\lambda\) and the value attached to a partition \(\lambda\) represents the map \(\mu \mapsto K_{\lambda,\mu}(\alpha)\) where the partition \(\mu\) is included in the keys of this map if and only if \(K_{\lambda,\mu}(\alpha) \neq 0\).
Arguments
:: Rational | Jack parameter |
-> Partition | outer partition of the skew partition |
-> Partition | inner partition of the skew partition |
-> Map Partition Rational |
Skew Kostka numbers \(K_{\lambda/\mu, \nu}(\alpha)\) with a given Jack
parameter \(\alpha\) and a given skew partition \(\lambda/\mu\). For \(\alpha=1\)
these are the ordinary skew Kostka numbers.
The function returns a map whose keys represent the partitions \(\nu\).
The skew Kostka-Jack number \(K_{\lambda/\mu, \nu}(\alpha)\)
is the coefficient of the monomial symmetric
polynomial \(m_\nu\) in the expression of the skew \(P\)-Jack polynomial
\(P_{\lambda/\mu}(\alpha)\) as a linear combination of monomial symmetric
polynomials.
Note: the skew Kostka-Jack numbers \(K_{\lambda/\mu, \nu}(\alpha)\) are
well defined when the Jack parameter \(\alpha\) is zero, however this
function does not work for \(\alpha=0\); a possible way to get the
skew Kostka-Jack numbers \(K_{\lambda/\mu, \nu}(0)\) is to use the
function symbolicSkewKostkaNumbers
to get the skew Kostka-Jack numbers
with a symbolic Jack parameter \(\alpha\), and then to substitute \(\alpha\)
with \(0\).
symbolicSkewKostkaNumbers Source #
Arguments
:: Partition | outer partition of the skew partition |
-> Partition | inner partition of the skew partition |
-> Map Partition RatioOfQSprays |
Skew Kostka numbers \(K_{\lambda/\mu, \nu}(\alpha)\) with symbolic Jack parameter \(\alpha\) for a given skew partition \(\lambda/\mu\). This function returns a map whose keys represent the partitions \(\nu\).