| Copyright | (c) Stéphane Laurent 2023 |
|---|---|
| License | BSD3 |
| Maintainer | laurent_step@outlook.fr |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Math.JacobiTheta
Description
Provides the four usual Jacobi theta functions, the Jacobi theta function
with characteristics, the derivative of the first Jacobi theta function,
as well as a function for the derivative at 0 only of the first Jacobi
theta function.
Synopsis
- jtheta1 :: Complex Double -> Complex Double -> Complex Double
- jtheta1' :: Complex Double -> Complex Double -> Complex Double
- jtheta2 :: Complex Double -> Complex Double -> Complex Double
- jtheta2' :: Complex Double -> Complex Double -> Complex Double
- jtheta3 :: Complex Double -> Complex Double -> Complex Double
- jtheta3' :: Complex Double -> Complex Double -> Complex Double
- jtheta4 :: Complex Double -> Complex Double -> Complex Double
- jtheta4' :: Complex Double -> Complex Double -> Complex Double
- jthetaAB :: Complex Double -> Complex Double -> Complex Double -> Complex Double -> Complex Double
- jthetaAB' :: Complex Double -> Complex Double -> Complex Double -> Complex Double -> Complex Double
- jtheta1Dash0 :: Complex Double -> Complex Double
- jtheta1Dash :: Complex Double -> Complex Double -> Complex Double
Documentation
First Jacobi theta function in function of the nome.
First Jacobi theta function in function of tau.
Second Jacobi theta function in function of the nome.
Second Jacobi theta function in function of tau.
Third Jacobi theta function in function of the nome.
Third Jacobi theta function in function of tau.
Fourth Jacobi theta function in function of the nome.
Fourth Jacobi theta function in function of tau.
Arguments
| :: Complex Double | characteristic a |
| -> Complex Double | characteristic b |
| -> Complex Double | z |
| -> Complex Double | q, the nome |
| -> Complex Double |
Jacobi theta function with characteristics. This is a family of functions,
containing the opposite of the first Jacobi theta function (a=b=0.5),
the second Jacobi theta function (a=0.5, b=0), the third Jacobi theta
function (a=b=0) and the fourth Jacobi theta function (a=0, b=0.5).
The examples below show the periodicity-like properties of these functions:
>>>import Data.Complex>>>a = 2 :+ 0.3>>>b = 1 :+ (-0.6)>>>z = 0.1 :+ 0.4>>>tau = 0.2 :+ 0.3>>>im = 0 :+ 1>>>q = exp(im * pi * tau)>>>jab = jthetaAB a b z q>>>jthetaAB a b (z + pi) q(-5.285746223832433e-3) :+ 0.1674462628348814
>>>jab * exp(2 * im * pi * a)(-5.285746223831987e-3) :+ 0.16744626283488154
>>>jtheta_ab a b (z + pi*tau) q0.10389127606987271 :+ 0.10155646232306936
>>>jab * exp(-im * (pi*tau + 2*z + 2*pi*b))0.10389127606987278 :+ 0.10155646232306961
Arguments
| :: Complex Double | characteristic a |
| -> Complex Double | characteristic b |
| -> Complex Double | z |
| -> Complex Double | tau |
| -> Complex Double |
Jacobi theta function with characteristics in function of tau.
Derivative at 0 of the first Jacobi theta function. This is much more
efficient than evaluating jtheta1Dash at 0.