jord: Geographical Position Calculations

[ bsd3, geography, library, program ] [ Propose Tags ]

Please see the README on GitHub at

[Skip to Readme]
Versions [faq],,,,,,,,
Change log
Dependencies base (>=4.9 && <5), haskeline (==0.7.*), jord [details]
License BSD-3-Clause
Copyright 2018 Cedric Liegeois
Author Cedric Liegeois
Maintainer Cedric Liegeois <>
Category Geography
Home page
Bug tracker
Source repo head: git clone
Uploaded by CedricLiegeois at Mon Sep 3 11:31:53 UTC 2018
Distributions NixOS:
Executables jord-repl
Downloads 2107 total (299 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Hackage Matrix CI
Docs uploaded by user
Build status unknown [no reports yet]




Maintainer's Corner

For package maintainers and hackage trustees

Readme for jord-

[back to package description]

Jord - Geographical Position Calculations

travis build status Hackage license

Jord [Swedish] is Earth [English]

What is this?

Jord is a Haskell library that implements various geographical position calculations using the algorithms described in Gade, K. (2010). A Non-singular Horizontal Position Representation and in Shudde, Rex H. (1986). Some tactical algorithms for spherical geometry:

  • transformation between ECEF (earth-centred, earth-fixed), latitude/longitude and n-vector positions for spherical and ellipsoidal earth model,
  • transformation between latitude/longitude and n-vector positions,
  • local, body and north, east, down Frames: delta between positions, target position from reference position and delta,
  • geodetics: surface distance, initial & final bearing, interpolated position, great circle intersections, cross track distance, ...,
  • kinematics: position from p0, bearing and speed, closest point of approach between tracks, intercept (time, speed, minimum speed).

How do I build it?

If you have Stack, then:

$ stack build --test

How do I use it?

See documentation on Hackage

import Data.Geo.Jord

-- Delta between positions in frameL
let p1 = decimalLatLongHeight 1 2 (metres (-3))
let p2 = decimalLatLongHeight 4 5 (metres (-6))
let w = decimalDegrees 5 -- wander azimuth
deltaBetween p1 p2 (frameL w) wgs84 -- deltaMetres 359490.579 302818.523 17404.272

-- destination position from 531914N0014347W having travelled 500Nm on a heading of 96.0217°
-- using mean earth radius derived from the WGS84 ellipsoid
destination84 (readLatLong "531914N0014347W") (decimalDegrees 96.0217) (nauticalMiles 500)
-- using mean earth radius derived from the GRS80 ellipsoid
destination (readLatLong "531914N0014347W") (decimalDegrees 96.0217) (nauticalMiles 500) r80

-- surface distance between 54°N,154°E and its antipodal position
let p = decimalLatLong 54 154
-- using mean earth radius derived from the WGS84 ellipsoid
surfaceDistance84 p (antipode p)
-- using mean earth radius derived from the GRS80 ellipsoid
surfaceDistance p (antipode p) r80

-- closest point of approach between tracks
let p1 = decimalLatLong 20 (-60)
let b1 = decimalDegrees 10
let s1 = knots 15
let p2 = decimalLatLong 34 (-50)
let b2 = decimalDegrees 220
let s2 = knots 300
let t1 = Track p1 b1 s1
let t2 = Track p2 b2 s2
-- using mean earth radius derived from the WGS84 ellipsoid
cpa84 t1 t2
-- using mean earth radius derived from the WGS72 ellipsoid
cpa t1 t2 r72

Jord comes with a REPL (built with haskeline):

$ jord-exe
jord> finalBearing (destination (antipode 54°N,154°E) 54° 1000m) 54°N,154°E
jord> angle: 126°0'0.0" (126.0)
jord> f = frameB 10d 20d 30d
jord> Body (vehicle) frame:
      yaw  : 10°0'0.000" (10.0)
      pitch: 20°0'0.000" (20.0)
      roll : 30°0'0.000" (30.0)
jord> d = delta 3000 2000 100
jord> Delta:
      x: 3.0km
      y: 2.0km
      z: 0.1km
jord> p0 = geo 49.66618 3.45063 0
jord> latlong: 49°39'58.248"N,3°27'2.268"E (49.66618, 3.45063)
      height : 0.0km
jord> target p0 f d wgs84
jord> latlong: 49°41'30.486"N,3°28'52.561"E (49.69180166666667, 3.4812669444444446)
      height : 6.0077e-3km