-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Support for serialising Haskell to and from JSON -- -- JSON (JavaScript Object Notation) is a lightweight data-interchange -- format. It is easy for humans to read and write. It is easy for -- machines to parse and generate. It is based on a subset of the -- JavaScript Programming Language, Standard ECMA-262 3rd Edition - -- December 1999. -- -- This library provides a parser and pretty printer for converting -- between Haskell values and JSON. @package json @version 0.10 -- | Basic support for working with JSON values. module Text.JSON.Types -- | JSON values -- -- The type to which we encode Haskell values. There's a set of -- primitives, and a couple of heterogenous collection types. -- -- Objects: -- -- An object structure is represented as a pair of curly brackets -- surrounding zero or more name/value pairs (or members). A name is a -- string. A single colon comes after each name, separating the name from -- the value. A single comma separates a value from a following name. -- -- Arrays: -- -- An array structure is represented as square brackets surrounding zero -- or more values (or elements). Elements are separated by commas. -- -- Only valid JSON can be constructed this way data JSValue JSNull :: JSValue JSBool :: !Bool -> JSValue JSRational :: Bool -> !Rational -> JSValue JSString :: JSString -> JSValue JSArray :: [JSValue] -> JSValue JSObject :: JSObject JSValue -> JSValue -- | Strings can be represented a little more efficiently in JSON newtype JSString JSONString :: String -> JSString [fromJSString] :: JSString -> String -- | Turn a Haskell string into a JSON string. toJSString :: String -> JSString -- | As can association lists newtype JSObject e JSONObject :: [(String, e)] -> JSObject e [fromJSObject] :: JSObject e -> [(String, e)] -- | Make JSON object out of an association list. toJSObject :: [(String, a)] -> JSObject a -- | Get the value of a field, if it exist. get_field :: JSObject a -> String -> Maybe a -- | Set the value of a field. Previous values are overwritten. set_field :: JSObject a -> String -> a -> JSObject a instance GHC.Classes.Ord Text.JSON.Types.JSValue instance GHC.Classes.Eq Text.JSON.Types.JSValue instance GHC.Read.Read Text.JSON.Types.JSValue instance GHC.Show.Show Text.JSON.Types.JSValue instance GHC.Read.Read e => GHC.Read.Read (Text.JSON.Types.JSObject e) instance GHC.Show.Show e => GHC.Show.Show (Text.JSON.Types.JSObject e) instance GHC.Classes.Ord e => GHC.Classes.Ord (Text.JSON.Types.JSObject e) instance GHC.Classes.Eq e => GHC.Classes.Eq (Text.JSON.Types.JSObject e) instance GHC.Read.Read Text.JSON.Types.JSString instance GHC.Show.Show Text.JSON.Types.JSString instance GHC.Classes.Ord Text.JSON.Types.JSString instance GHC.Classes.Eq Text.JSON.Types.JSString instance Data.String.IsString Text.JSON.Types.JSValue instance Data.String.IsString Text.JSON.Types.JSString -- | Basic support for working with JSON values. module Text.JSON.String -- | Parsing JSON -- -- The type of JSON parsers for String data GetJSON a -- | Run a JSON reader on an input String, returning some Haskell value. -- All input will be consumed. runGetJSON :: GetJSON a -> String -> Either String a -- | Read the JSON null type readJSNull :: GetJSON JSValue -- | Read the JSON Bool type readJSBool :: GetJSON JSValue -- | Read the JSON String type readJSString :: GetJSON JSValue -- | Read an Integer or Double in JSON format, returning a Rational readJSRational :: GetJSON Rational -- | Read a list in JSON format readJSArray :: GetJSON JSValue -- | Read an object in JSON format readJSObject :: GetJSON JSValue -- | Read one of several possible JS types readJSValue :: GetJSON JSValue -- | Top level JSON can only be Arrays or Objects readJSTopType :: GetJSON JSValue -- | Write the JSON null type showJSNull :: ShowS -- | Write the JSON Bool type showJSBool :: Bool -> ShowS -- | Show a list in JSON format showJSArray :: [JSValue] -> ShowS -- | Show an association list in JSON format showJSObject :: JSObject JSValue -> ShowS -- | Show a Rational in JSON format showJSRational :: Rational -> ShowS showJSRational' :: Bool -> Rational -> ShowS -- | Show JSON values showJSValue :: JSValue -> ShowS -- | Writing JSON -- -- Show strict JSON top level types. Values not permitted at the top -- level are wrapped in a singleton array. showJSTopType :: JSValue -> ShowS instance GHC.Base.Functor Text.JSON.String.GetJSON instance GHC.Base.Applicative Text.JSON.String.GetJSON instance GHC.Base.Monad Text.JSON.String.GetJSON instance Control.Monad.Fail.MonadFail Text.JSON.String.GetJSON -- | Parse JSON values using the ReadP combinators. module Text.JSON.ReadP p_value :: ReadP JSValue p_null :: ReadP () p_boolean :: ReadP Bool p_array :: ReadP [JSValue] p_string :: ReadP String p_object :: ReadP [(String, JSValue)] p_number :: ReadP Rational p_js_string :: ReadP JSString p_js_object :: ReadP (JSObject JSValue) -- | Display JSON values using pretty printing combinators. module Text.JSON.Pretty pp_value :: JSValue -> Doc pp_null :: Doc pp_boolean :: Bool -> Doc pp_number :: Bool -> Rational -> Doc pp_array :: [JSValue] -> Doc pp_string :: String -> Doc pp_object :: [(String, JSValue)] -> Doc pp_js_string :: JSString -> Doc pp_js_object :: JSObject JSValue -> Doc -- | Parse JSON values using the Parsec combinators. module Text.JSON.Parsec p_value :: CharParser () JSValue p_null :: CharParser () () p_boolean :: CharParser () Bool p_array :: CharParser () [JSValue] p_string :: CharParser () String p_object :: CharParser () [(String, JSValue)] p_number :: CharParser () Rational p_js_string :: CharParser () JSString p_js_object :: CharParser () (JSObject JSValue) p_jvalue :: CharParser () JSValue -- | Serialising Haskell values to and from JSON values. module Text.JSON -- | JSON values -- -- The type to which we encode Haskell values. There's a set of -- primitives, and a couple of heterogenous collection types. -- -- Objects: -- -- An object structure is represented as a pair of curly brackets -- surrounding zero or more name/value pairs (or members). A name is a -- string. A single colon comes after each name, separating the name from -- the value. A single comma separates a value from a following name. -- -- Arrays: -- -- An array structure is represented as square brackets surrounding zero -- or more values (or elements). Elements are separated by commas. -- -- Only valid JSON can be constructed this way data JSValue JSNull :: JSValue JSBool :: !Bool -> JSValue JSRational :: Bool -> !Rational -> JSValue JSString :: JSString -> JSValue JSArray :: [JSValue] -> JSValue JSObject :: JSObject JSValue -> JSValue -- | The class of types serialisable to and from JSON class JSON a readJSON :: JSON a => JSValue -> Result a showJSON :: JSON a => a -> JSValue readJSONs :: JSON a => JSValue -> Result [a] showJSONs :: JSON a => [a] -> JSValue -- | A type for parser results data Result a Ok :: a -> Result a Error :: String -> Result a -- | Encode a Haskell value into a string, in JSON format. -- -- This is a superset of JSON, as types other than Array and Object are -- allowed at the top level. encode :: JSON a => a -> String -- | Decode a String representing a JSON value (either an object, array, -- bool, number, null) -- -- This is a superset of JSON, as types other than Array and Object are -- allowed at the top level. decode :: JSON a => String -> Result a -- | Encode a value as a String in strict JSON format. This follows the -- spec, and requires all values at the top level to be wrapped in either -- an Array or Object. JSON types to be an Array or Object. encodeStrict :: JSON a => a -> String -- | Decode a String representing a strict JSON value. This follows the -- spec, and requires top level JSON types to be an Array or Object. decodeStrict :: JSON a => String -> Result a -- | Strings can be represented a little more efficiently in JSON data JSString -- | Turn a Haskell string into a JSON string. toJSString :: String -> JSString fromJSString :: JSString -> String -- | As can association lists data JSObject e -- | Make JSON object out of an association list. toJSObject :: [(String, a)] -> JSObject a fromJSObject :: JSObject e -> [(String, e)] -- | Map Results to Eithers resultToEither :: Result a -> Either String a -- | Read the JSON null type readJSNull :: GetJSON JSValue -- | Read the JSON Bool type readJSBool :: GetJSON JSValue -- | Read the JSON String type readJSString :: GetJSON JSValue -- | Read an Integer or Double in JSON format, returning a Rational readJSRational :: GetJSON Rational -- | Read a list in JSON format readJSArray :: GetJSON JSValue -- | Read an object in JSON format readJSObject :: GetJSON JSValue -- | Read one of several possible JS types readJSValue :: GetJSON JSValue -- | Write the JSON null type showJSNull :: ShowS -- | Write the JSON Bool type showJSBool :: Bool -> ShowS -- | Show a list in JSON format showJSArray :: [JSValue] -> ShowS -- | Show a Rational in JSON format showJSRational :: Rational -> ShowS showJSRational' :: Bool -> Rational -> ShowS -- | Show an association list in JSON format showJSObject :: JSObject JSValue -> ShowS -- | Show JSON values showJSValue :: JSValue -> ShowS makeObj :: [(String, JSValue)] -> JSValue -- | Pull a value out of a JSON object. valFromObj :: JSON a => String -> JSObject JSValue -> Result a -- | Haskell types that can be used as keys in JSON objects. class JSKey a toJSKey :: JSKey a => a -> String fromJSKey :: JSKey a => String -> Maybe a -- | Encode an association list as JSValue value. encJSDict :: (JSKey a, JSON b) => [(a, b)] -> JSValue -- | Decode a JSValue value into an association list. decJSDict :: (JSKey a, JSON b) => String -> JSValue -> Result [(a, b)] instance GHC.Show.Show a => GHC.Show.Show (Text.JSON.Result a) instance GHC.Classes.Eq a => GHC.Classes.Eq (Text.JSON.Result a) instance Text.JSON.JSKey Text.JSON.Types.JSString instance Text.JSON.JSKey GHC.Types.Int instance Text.JSON.JSKey GHC.Base.String instance Text.JSON.JSON Text.JSON.Types.JSValue instance Text.JSON.JSON Text.JSON.Types.JSString instance Text.JSON.JSON a => Text.JSON.JSON (Text.JSON.Types.JSObject a) instance Text.JSON.JSON GHC.Types.Bool instance Text.JSON.JSON GHC.Types.Char instance Text.JSON.JSON GHC.Types.Ordering instance Text.JSON.JSON GHC.Integer.Type.Integer instance Text.JSON.JSON GHC.Types.Int instance Text.JSON.JSON GHC.Types.Word instance Text.JSON.JSON GHC.Word.Word8 instance Text.JSON.JSON GHC.Word.Word16 instance Text.JSON.JSON GHC.Word.Word32 instance Text.JSON.JSON GHC.Word.Word64 instance Text.JSON.JSON GHC.Int.Int8 instance Text.JSON.JSON GHC.Int.Int16 instance Text.JSON.JSON GHC.Int.Int32 instance Text.JSON.JSON GHC.Int.Int64 instance Text.JSON.JSON GHC.Types.Double instance Text.JSON.JSON GHC.Types.Float instance Text.JSON.JSON a => Text.JSON.JSON (GHC.Maybe.Maybe a) instance (Text.JSON.JSON a, Text.JSON.JSON b) => Text.JSON.JSON (Data.Either.Either a b) instance Text.JSON.JSON () instance (Text.JSON.JSON a, Text.JSON.JSON b) => Text.JSON.JSON (a, b) instance (Text.JSON.JSON a, Text.JSON.JSON b, Text.JSON.JSON c) => Text.JSON.JSON (a, b, c) instance (Text.JSON.JSON a, Text.JSON.JSON b, Text.JSON.JSON c, Text.JSON.JSON d) => Text.JSON.JSON (a, b, c, d) instance Text.JSON.JSON a => Text.JSON.JSON [a] instance (GHC.Classes.Ord a, Text.JSON.JSON a, Text.JSON.JSON b) => Text.JSON.JSON (Data.Map.Internal.Map a b) instance Text.JSON.JSON a => Text.JSON.JSON (Data.IntMap.Internal.IntMap a) instance (GHC.Classes.Ord a, Text.JSON.JSON a) => Text.JSON.JSON (Data.Set.Internal.Set a) instance (GHC.Arr.Ix i, Text.JSON.JSON i, Text.JSON.JSON e) => Text.JSON.JSON (GHC.Arr.Array i e) instance Text.JSON.JSON Data.IntSet.Internal.IntSet instance Text.JSON.JSON Data.ByteString.Internal.ByteString instance Text.JSON.JSON Data.ByteString.Lazy.Internal.ByteString instance Text.JSON.JSON Data.Text.Internal.Text instance GHC.Base.Functor Text.JSON.Result instance GHC.Base.Applicative Text.JSON.Result instance GHC.Base.Alternative Text.JSON.Result instance GHC.Base.MonadPlus Text.JSON.Result instance GHC.Base.Monad Text.JSON.Result instance Control.Monad.Fail.MonadFail Text.JSON.Result -- | JSON serializer and deserializer using Data.Generics. The functions -- here handle algebraic data types and primitive types. It uses the same -- representation as Text.JSON for Prelude types. module Text.JSON.Generic -- | The Data class comprehends a fundamental primitive -- gfoldl for folding over constructor applications, say terms. -- This primitive can be instantiated in several ways to map over the -- immediate subterms of a term; see the gmap combinators later -- in this class. Indeed, a generic programmer does not necessarily need -- to use the ingenious gfoldl primitive but rather the intuitive -- gmap combinators. The gfoldl primitive is completed by -- means to query top-level constructors, to turn constructor -- representations into proper terms, and to list all possible datatype -- constructors. This completion allows us to serve generic programming -- scenarios like read, show, equality, term generation. -- -- The combinators gmapT, gmapQ, gmapM, etc are all -- provided with default definitions in terms of gfoldl, leaving -- open the opportunity to provide datatype-specific definitions. (The -- inclusion of the gmap combinators as members of class -- Data allows the programmer or the compiler to derive -- specialised, and maybe more efficient code per datatype. Note: -- gfoldl is more higher-order than the gmap combinators. -- This is subject to ongoing benchmarking experiments. It might turn out -- that the gmap combinators will be moved out of the class -- Data.) -- -- Conceptually, the definition of the gmap combinators in terms -- of the primitive gfoldl requires the identification of the -- gfoldl function arguments. Technically, we also need to -- identify the type constructor c for the construction of the -- result type from the folded term type. -- -- In the definition of gmapQx combinators, we use -- phantom type constructors for the c in the type of -- gfoldl because the result type of a query does not involve the -- (polymorphic) type of the term argument. In the definition of -- gmapQl we simply use the plain constant type constructor -- because gfoldl is left-associative anyway and so it is readily -- suited to fold a left-associative binary operation over the immediate -- subterms. In the definition of gmapQr, extra effort is needed. We use -- a higher-order accumulation trick to mediate between left-associative -- constructor application vs. right-associative binary operation (e.g., -- (:)). When the query is meant to compute a value of type -- r, then the result type withing generic folding is r -- -> r. So the result of folding is a function to which we -- finally pass the right unit. -- -- With the -XDeriveDataTypeable option, GHC can generate -- instances of the Data class automatically. For example, given -- the declaration -- --
-- data T a b = C1 a b | C2 deriving (Typeable, Data) ---- -- GHC will generate an instance that is equivalent to -- --
-- instance (Data a, Data b) => Data (T a b) where -- gfoldl k z (C1 a b) = z C1 `k` a `k` b -- gfoldl k z C2 = z C2 -- -- gunfold k z c = case constrIndex c of -- 1 -> k (k (z C1)) -- 2 -> z C2 -- -- toConstr (C1 _ _) = con_C1 -- toConstr C2 = con_C2 -- -- dataTypeOf _ = ty_T -- -- con_C1 = mkConstr ty_T "C1" [] Prefix -- con_C2 = mkConstr ty_T "C2" [] Prefix -- ty_T = mkDataType "Module.T" [con_C1, con_C2] ---- -- This is suitable for datatypes that are exported transparently. class Typeable a => Data a -- | The class Typeable allows a concrete representation of a type -- to be calculated. class Typeable (a :: k) -- | Convert anything to a JSON value. toJSON :: Data a => a -> JSValue -- | Convert a JSON value to anything (fails if the types do not match). fromJSON :: Data a => JSValue -> Result a -- | Encode a value as a string. encodeJSON :: Data a => a -> String -- | Decode a string as a value. decodeJSON :: Data a => String -> a toJSON_generic :: Data a => a -> JSValue fromJSON_generic :: Data a => JSValue -> Result a