-- | Encodes Horn problems as unit equalities. module Jukebox.Tools.HornToUnit where -- To translate Horn problems where the only predicate is equality, we use the -- following translation. -- -- We introduce a predicate $ifeq : A * A * B > B at (conceptually) each pair -- of types A and B, together with the axiom -- $ifeq(X, X, Y) = Y. -- -- A conditional equation a = b => c = d is encoded as -- $ifeq(a, b, c) = $ifeq(a, b, d) -- -- When encoding equations with multiple conditions we proceed from the inside -- out so that, for example -- a = b & c = d => e = f -- would become -- a = b => $ifeq(c, d, e) = $ifeq(c, d, f) -- which in turn becomes -- $ifeq(a, b, $ifeq(c, d, e)) = $ifeq(a, b, $ifeq(c, d, f)) -- -- We encode predicates p(X) as equations p(X)=true, i.e., we introduce a new -- type bool and term true : bool, and transform predicates into functions -- to bool. import Jukebox.Form import Jukebox.Name import Jukebox.Options import Jukebox.Utils import qualified Jukebox.Sat as Sat import Data.List import Control.Monad import qualified Data.Set as Set import qualified Data.Map.Strict as Map import Control.Monad.Trans.RWS import Control.Monad.Trans.List import Control.Monad.Trans.Class data HornFlags = HornFlags { allowConjunctiveConjectures :: Bool, allowDisjunctiveConjectures :: Bool, allowNonGroundConjectures :: Bool, allowCompoundConjectures :: Bool, dropNonHorn :: Bool, passivise :: Bool, multi :: Bool, smaller :: Bool, encoding :: Encoding } deriving Show data Encoding = Symmetric | Asymmetric1 | Asymmetric2 | Asymmetric3 deriving (Eq, Show) hornFlags :: OptionParser HornFlags hornFlags = inGroup "Horn clause encoding options" $ HornFlags <$> bool "conjunctive-conjectures" ["Allow conjectures to be conjunctions of equations (on by default)."] True <*> bool "disjunctive-conjectures" ["Allow conjectures to be disjunctions of equations (on by default)."] True <*> bool "non-ground-conjectures" ["Allow conjectures to be non-ground clauses (on by default)."] True <*> bool "compound-conjectures" ["Allow conjectures to be compound terms (on by default)."] True <*> bool "drop-non-horn" ["Silently drop non-Horn clauses from input problem (off by default)."] False <*> bool "passivise" ["Encode problem so as to get fewer critical pairs (off by default)."] False <*> bool "multi" ["Encode multiple left-hand sides at once (off by default)."] False <*> bool "smaller" ["Swap ordering of certain equations (off by default)"] False <*> encoding where encoding = flag "conditional-encoding" ["Which method to use to encode conditionals (if-then-else by default)."] Asymmetric1 (argOption [("if-then", Symmetric), ("if-then-else", Asymmetric1), ("fresh", Asymmetric2), ("if", Asymmetric3)]) hornToUnit :: HornFlags -> Problem Clause -> IO (Either (Input Clause) (Either Answer (Problem Clause))) hornToUnit flags prob = do res <- encodeTypesSmartly prob return $ case res of Left ans -> Right (Left ans) Right enc -> fmap (Right . enc) $ eliminateHornClauses flags $ eliminateUnsuitableConjectures flags $ eliminateMultiplePreconditions flags $ eliminatePredicates prob eliminatePredicates :: Problem Clause -> Problem Clause eliminatePredicates prob = map (fmap elim) prob where elim = clause . map (fmap elim1) . toLiterals elim1 (t :=: u) = t :=: u elim1 (Tru ((p ::: FunType tys _) :@: ts)) = ((p ::: FunType tys bool) :@: ts) :=: true (bool, true) = run_ prob $ do bool <- newType (withLabel "bool" (name "bool")) true <- newFunction (withLabel "true" (name "true")) [] bool return (bool, true :@: []) eliminateMultiplePreconditions :: HornFlags -> Problem Clause -> Problem Clause eliminateMultiplePreconditions flags prob | otherwise = map elim prob where elim inp | length negs /= 1 && if null poss then not (allowConjunctiveConjectures flags) else multi flags = inp{what = clause (Neg ((tuple tys :@: ts) :=: (tuple tys :@: us)):poss)} where (poss, negs) = partition pos (toLiterals (what inp)) ts = [t | l <- negs, let Neg (t :=: _) = l] us = [u | l <- negs, let Neg (_ :=: u) = l] tys = map typ ts elim inp = inp tuple = run_ prob $ do tupleType <- newName (withLabel "tuple" (name "tuple")) tuple <- newName (withLabel "tuple" (name "tuple")) return $ \args -> variant tuple args ::: FunType args (Type (variant tupleType args)) eliminateUnsuitableConjectures :: HornFlags -> Problem Clause -> Problem Clause eliminateUnsuitableConjectures flags prob | null bad = prob | otherwise = good ++ map (fmap addConjecture) bad ++ [Input { tag = "goal", kind = Ax NegatedConjecture, source = Unknown, what = clause [Neg (a :=: b)] }] where (bad, good) = partition unsuitable prob ngoals = length $ filter (all (not . pos) . toLiterals . what) prob unsuitable c = all (not . pos) ls && ((not (allowCompoundConjectures flags) && or [size t > 1 | t <- terms ls]) || (not (allowDisjunctiveConjectures flags) && ngoals > 1) || (not (allowNonGroundConjectures flags) && not (ground ls))) where ls = toLiterals (what c) addConjecture c = clause (Pos (a :=: b):toLiterals c) (a, b) = run_ prob $ do token <- newType (withLabel "token" (name "token")) a <- newFunction (withLabel "token_a" (name "a")) [] token b <- newFunction (withLabel "token_b" (name "b")) [] token return (a :@: [], b :@: []) eliminateHornClauses :: HornFlags -> Problem Clause -> Either (Input Clause) (Problem Clause) eliminateHornClauses flags prob = do (prob, funs) <- evalRWST (mapM elim1 prob) () 0 return (map toInput (usort funs) ++ concat prob) where fresh base = lift $ do n <- get put $! n+1 return (variant base [name (show n)]) passiveFresh (x ::: ty) | passivise flags = fmap (::: ty) (fresh x) | otherwise = return (x ::: ty) passive (Var x) = Var x passive ((f ::: ty) :@: ts) = (variant f [passiveName] ::: ty) :@: map passive ts elim1 :: Input Clause -> RWST () [(String, Atomic)] Int (Either (Input Clause)) [Input Clause] elim1 c = case partition pos (toLiterals (what c)) of ([], _) -> return [c] ([Pos l], ls) -> runListT $ do l <- foldM (encode (tag c)) l ls return c { what = clause [Pos l] } _ -> if dropNonHorn flags then return [] else lift $ Left c encode :: String -> Atomic -> Literal -> ListT (RWST () [(String, Atomic)] Int (Either (Input Clause))) Atomic encode tag (c :=: d) (Neg (a :=: b)) = let ty1 = typ a ty2 = typ c x = Var (xvar ::: ty1) y = Var (yvar ::: ty2) z = Var (zvar ::: ty2) in case encoding flags of -- ifeq(x, x, y) = y -- ifeq(a, b, c) = ifeq(a, b, d) Symmetric -> do ifeq <- passiveFresh (variant ifeqName [name ty1, name ty2] ::: FunType [ty1, ty1, ty2] ty2) if passivise flags then do axiom (tag, ifeq :@: [x, x, passive c] :=: c) axiom (tag, ifeq :@: [x, x, passive d] :=: d) return (ifeq :@: [a, b, passive c] :=: ifeq :@: [a, b, passive d]) else do axiom ("ifeq_axiom", ifeq :@: [x, x, y] :=: y) return (ifeq :@: [a, b, c] :=: ifeq :@: [a, b, d]) -- ifeq(x, x, y, z) = y -- ifeq(a, b, c, d) = d Asymmetric1 -> do ifeq <- passiveFresh (variant ifeqName [name ty1, name ty2] ::: FunType [ty1, ty1, ty2, ty2] ty2) (c :=: d) <- return (swap size (c :=: d)) if passivise flags then do axiom ("ifeq_axiom", ifeq :@: [x, x, passive c, y] :=: c) return (ifeq :@: [a, b, passive c, passive d] :=: d) else do axiom ("ifeq_axiom", ifeq :@: [x, x, y, z] :=: y) return (ifeq :@: [a, b, c, d] :=: d) -- f(a, sigma) = c -- f(b, sigma) = d -- where sigma = FV(a, b, c, d) Asymmetric2 -> do ifeqName <- fresh freshName (a :=: b) <- return (swap size (a :=: b)) (c :=: d) <- return (swap size (c :=: d)) let vs = if passivise flags then map passive [a, b, c, d] else map Var (Set.toList (Set.unions (map free [a, b, c, d]))) ifeq = ifeqName ::: FunType (ty1:map typ vs) ty2 app t = ifeq :@: (t:vs) if smaller flags then do axiom (tag, app b :=: d) return (app a :=: c) else do axiom (tag, app a :=: c) return (app b :=: d) -- f(a, b, sigma) = c -- f(x, x, sigma) = d -- where sigma = FV(c, d) Asymmetric3 -> do ifeqName <- fresh freshName (c :=: d) <- return (swap size (c :=: d)) let vs = if passivise flags then map passive [c, d] else map Var (Set.toList (Set.unions (map free [c, d]))) ifeq = ifeqName ::: FunType (ty1:ty1:map typ vs) ty2 app t u = ifeq :@: (t:u:vs) x = Var (xvar ::: ty1) axiom (tag, app x x :=: c) return (app a b :=: d) swap f (t :=: u) = (\(t :=: u) -> if smaller flags then u :=: t else t :=: u) $ if f t >= f u then (t :=: u) else (u :=: t) axiom l = lift $ tell [l] toInput (tag, l) = Input { tag = tag, kind = Ax Axiom, source = Unknown, what = clause [Pos l] } (ifeqName, freshName, passiveName, xvar, yvar, zvar) = run_ prob $ do ifeqName <- newName (withLabel "ifeq" (name "ifeq")) freshName <- newName (withLabel "fresh" (name "fresh")) passiveName <- newName (withLabel "passive" (name "passive")) xvar <- newName "A" yvar <- newName "B" zvar <- newName "C" return (ifeqName, freshName, passiveName, xvar, yvar, zvar) -- Soundly encode types, but try to erase them if possible. -- Based on the observation that if the input problem is untyped, -- erasure is sound unless: -- * the problem is satisfiable -- * but the only model is of size 1. -- We therefore check if there is a model of size 1. This is easy -- (the term structure collapses), and if so, we return the SZS -- status directly instead. encodeTypesSmartly :: Problem Clause -> IO (Either Answer (Problem Clause -> Problem Clause)) encodeTypesSmartly prob | isFof prob = do sat <- hasSizeOneModel prob if sat then return $ Left $ Sat Satisfiable $ Just ["There is a model where all terms are equal, ![X,Y]:X=Y."] else return (Right eraseTypes) | otherwise = return (Right id) -- Check if a problem has a model of size 1. -- Done by erasing all terms from the problem. hasSizeOneModel :: Problem Clause -> IO Bool hasSizeOneModel p = do s <- Sat.newSolver let funs = functions p lits <- replicateM (length funs) (Sat.newLit s) let funMap = Map.fromList (zip funs lits) transClause (Clause (Bind _ ls)) = map transLit ls transLit (Pos a) = transAtom a transLit (Neg a) = Sat.neg (transAtom a) transAtom (Tru (p :@: _)) = Map.findWithDefault undefined p funMap transAtom (_ :=: _) = Sat.true mapM_ (Sat.addClause s . transClause) (map what p) Sat.solve s [] <* Sat.deleteSolver s