Kempe Compiler & Language Manual

Vanessa McHale

Contents
Introduction

Installing kc
Editor Integration

Kempe Language

Types . . o o e

Polymorphism oo
Literals e
Builtins

IfBlocks
Sum Types oL

Pattern Matching oL oo
Imports
FFL . o e
Recursion L

Non-Features

Programming in Kempe
Invoking the Compiler L L L.
Cross-Compilation 0.
Internals
CCalls
Kempe ABI

Examples

Splitmix Pseudorandom Number Generator

Q
Q
O
© © w o

Introduction

Kempe is a stack-based language, and kc is a toy compiler for x86_ 64 and
aarch64.

Installing kc
First, install cabal and GHC. Then:
cabal install kempe

This provides kc, the Kempe compiler.
kc requires NASM when targeting x86_ 64.

Editor Integration

A vim plugin is available.

To install with vim-plug:

Plug ’vmchale/kempe’ , { ’rtp’ : ’vim’ }

Kempe Language

Types

Kempe has a stack-based type system. So if you see a type signature:
next : Word -- Word Word

that means that the stack must have a Word on it for next to be invoked, and
that it will have two Words on the stack after it is invoked.

https://www.haskell.org/cabal/download.html
https://www.haskell.org/ghc/download.html
https://www.nasm.us/
https://github.com/vmchale/kempe/tree/master/vim
https://github.com/junegunn/vim-plug

Polymorphism

Kempe allows polymorphic functions. So we can define:

id : a -—- a

=: [1]

Literals

Integer literals have type -- Int.
Positive literals followed by a u have type -- Word, e.g. 1u.

Negative integer literals are indicated by an underscore, _, i.e. _1 has type —-
Int.

Builtins

The Kempe compiler has a few builtin functions that you can use for arith-
metic and for shuffling data around. Many of them are familiar to stack-based
programmers:

e dup : a —— a a
e swap : a b -—-Dba

e drop : a —-

For arithmetic:

e + : Int Int —- Int
e *x : Int Int —- Int
e - : Int Int —- Int

e / : Int Int -- Int
e % : Int Int —- Int

e >> : Int Int —-- Int
e << : Int Int -- Int
e xori : Int Int -- Int

e +~ : Word Word -- Word

e *~ : Word Word -- Word

e /~ : Word Word -- Word

e %~ : Word Word -- Word

e >>~ : Word Word -- Word
e <L~ : Word Word -- Word
e xoru : Word Word -- Word
e popcount : Word -- Int

e = : Int Int -- Bool
> : Int Int -- Bool
e < : Int Int -- Bool
= : Int Int -- Bool
e <= : Int Int -- Bool
e >= : Int Int -- Bool
e & : Bool Bool -- Bool
e || : Bool Bool —-- Bool

e xor : Bool Bool -- Bool
e ~ : Int —- Int

% is like Haskell’s rem and / is like Haskell’s quot. >>, <<, >>~ and <<~ are like
Haskell’s rotate; i.e. they are logical shifts (not arithmetic shifts).

There is one higher-order construct, dip, which we illustrate by example:

nip : ab -—->
=: [dip(drop)]

If Blocks

If-blocks are atoms which contain two blocks of atoms on each arm. If the next
item on the stack is True, the first will be executed, otherwise the second.

loop : Int Int -- Int
=: [swap dup O =

if (drop
, dup 1 - dip(*) swap loop)

fac_tailrec : Int -- Int
=: [1 loop]

Sum Types

Kempe supports sum types, for instance:
type Maybe a { Just a | Nothing }
Note that empty sum types such as
type Void {}

are not really supported.

Pattern Matching

Sum types are taken apart with pattern matching, viz.
isJust : (Maybe a) -- Bool
= [
{ case

| Just -> drop True
| Nothing -> False

Note that pattern matches in Kempe must be exhaustive.

Imports

Kempe has rudimentary imports. As an example:

import "prelude/fn.kmp"

type Pair a b { Pair a b }

snd : ((Pair a) b) -- b
=: [unPair nip]

where prelude/fn.kmp contains

nip : ab -—-b
=: [dip(drop)]

The import system is sort of defective.

FFI

Kempe can call into C functions. Suppose we have

int rand(void);

Then we can declare this as:

rand : -—- Int
=: $cfun"rand"

And rand will be available as a Kempe function.

Recursion

kc optimizes tail recursion.

Non-Features

Kempe is missing a good many features, such as:

o Floats

e Dynamically sized data types
o Strings

e Recursive data types

o Pointers

e Operator overloading

Programming in Kempe

Invoking the Compiler

kc cannot be used to produce executables. Rather, the Kempe compiler will
produce .o files which contain functions.

Kempe functions can be exported with a C ABI:
fac : Int -- Int
=: [dup 0 =

if (drop 1
, dup 1 - fac *)

%foreign cabi fac

This would be called with a C wrapper like so:

#include <stdio.h>
extern int fac(int);

int main(int argc, char *argv[]) {
printf ("%d", fac(3));
}
The C ABI should work on Unix; it does not target Windows.
Unlike the frontend and type checker, the backend is dodgy.

Cross-Compilation
kc is a cross-compiler; the target architecture can be set by passing one of x64 or
aarch64 to -—arch. By default kc targets the architecture of the host machine.

You will need the appropriate assembler installed.

Internals
Kempe maintains its own stack and stores the pointer in rbp (x86) or x19
(aarch64).

Kempe procedures do not require any registers to be preserved across function
calls.

C Calls
When exporting to C, kc generates code that initializes the Kempe data pointer
(rbx). Thus, one should avoid calling into Kempe code too often!

Note that the Kempe data pointer is static, so calling different Kempe functions
in different threads will fail unpredictably.

Kempe ABI

Sum types have a guaranteed representation so that they can be used from other
languages.

Consider:

type Param a b ¢
{Cabb
| Dabc
X

Kempe types always have the same size; a value constructed with C will occupy
the same number of bytes on the stack as a value constructed with D.

So, for instance

mkD : Int8 Int Int8 —- (((Param Int8) Int) Int8)
=: [D]

will pad the value with 7 bytes, as a (((Param Int8) Int) Int8) constructed
with C would be 7 bytes bigger.

Examples

Splitmix Pseudorandom Number Generator

The generator in question comes from a recent paper.

Implementation turns out to be quite nice thanks to Kempe’s multiple return
values:

; given a seed, return a random value and the new seed
next : Word -- Word Word
=: [0x9e3779b97f4a7c1bu +~ dup
dup 30u >>~ xoru Oxbf58476dlced4ebb9u *~
dup 27u >>~ xoru 0x94d049bb13311lebu *~
dup 31u >>~ xoru

%foreign kabi next
Compare this C implementation:

#include <stdint.h>

// modified to have ""multiple return"" with destination-passing style
uint64_t next(uint64_t x, uint64_tx y) {

uint64_t z = (x += 0x9e3779b97f4a7c1b);

z = (z ~ (z > 30)) * 0xbf58476d1cede5b9;

z=(z " (z > 27)) * 0x94d049bb133111eb;

*y:x;

return z ~ (z >> 31);

https://dl.acm.org/doi/10.1145/2714064.2660195
http://prng.di.unimi.it/splitmix64.c

GCD

gcd : Int Int -- Int
=: [dup 0 =
if(drop
, dup dip(%) swap gcd)

Mutual Recursion

kc supports mutual recursion:

odd : Int -- Bool
=: [dup 0 =

if (drop False

, — 1 even)

even : Int -- Bool
=: [dup 0 =

if(drop True

, - 1 o0dd)

	Introduction
	Installing kc
	Editor Integration

	Kempe Language
	Types
	Polymorphism

	Literals
	Builtins
	If Blocks

	Sum Types
	Pattern Matching

	Imports
	FFI
	Recursion
	Non-Features

	Programming in Kempe
	Invoking the Compiler
	Cross-Compilation

	Internals
	C Calls
	Kempe ABI

	Examples
	Splitmix Pseudorandom Number Generator
	GCD
	Mutual Recursion

