Îõ³h*3›/7«      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª0.6.0 Safe-Inferred (1ÀÎÛäåì‰  kind-integerRounding strategy. kind-integerRound up towards positive infinity. kind-integerRound down+ towards negative infinity. Also known as Prelude's '. This is the type of rounding used by Prelude's , , ,   ,   . kind-integerRound towards zero. Also known as Prelude's  (. This is the type of rounding used by Prelude's  , , . kind-integerRound away from zero. kind-integer&Round towards the closest integer. If half!way between two integers, round up towards positive infinity. kind-integer&Round towards the closest integer. If half!way between two integers, round down towards negative infinity. kind-integer&Round towards the closest integer. If half)way between two integers, round towards zero. kind-integer&Round towards the closest integer. If half!way between two integers, round away from zero.  kind-integer&Round towards the closest integer. If half5way between two integers, round towards the closest even integer. Also known as Prelude's .  kind-integer&Round towards the closest integer. If half5way between two integers, round towards the closest odd integer.    Safe-Inferred  (1ÀÎÛäåìò-ÀÒ« kind-integer'¬ if the distance between a and b is less than 0.5.­ kind-integer Invariant: ®% is never 0. This is enforced by the ¯ type-family.° kind-integerOnly used for defining the   pattern synonym.  kind-integer Singleton type for a type-level k i.± kind-integer$Least Common Multiple of type-level ®s a and b.# kind-integer$Least Common Multiple of type-level k numbers a and b. Returns a ®5, since the Least Common Multiple is always positive.² kind-integer&Greatest Common Divisor of type-level ®s a and b.& kind-integer&Greatest Common Divisor of type-level k numbers a and b. Returns a ®7, since the Greatest Common Divisor is always positive.) kind-integer Log base 2 (³ed) of type-level ks. Logarithm of zero doesn't type-check.0Logarithm of negative number doesn't type-check.. kind-integerDivide the type-level k a by b, using the specified ing r. Division by zero doesn't type-check.3 kind-integer3%ainder of the division of type-level k a by b, using the specified ing r.  forall (r :: ) (a :: k) (b :: k). (b /= 0) => 3 r a b == a ´ b µ . r a b  Division by zero doesn't type-check.8 kind-integerGet both the quotient and the 3ainder of the .ision of type-level ks a and b using the specified ing r.  forall (r :: ) (a :: k) (b :: k). (b /= 0) => 8 r a b == '(. r a b, 3 r a b) < kind-integerExponentiation of type-level ks.= kind-integerAbsolute value of a type-level k, as a type-level ®.@ kind-integerWhether a type-level k is even. Zero is considered even.C kind-integerWhether a type-level k is odd. Zero is not considered odd.D kind-integer Inverse of E.E kind-integerZigZag encoding of an k.0 is 0-x is abs(x) * 2 - 1+x is x * 2H kind-integerConstruct a type-level k from a type-level ®.I kind-integer0Term-level representation of an existentialized P.M kind-integerM i6 is an identity function that fails to type-check if i% is not in normalized form. That is, zero is represented with j , not with e 0 or  h 0.P kind-integer Type-level k s satisfying P can be converted to  s using x. Every k other than k 0 and k 0 are Ps.¶ kind-integerThis class gives the   associated with a type-level k.U kind-integer Displays ià as it would show literally as a type. See 'ShowLit. Behaves like ·.Y kind-integer Displays ià as it would show literally as a type. See 'ShowLit. Behaves like ¸.\ kind-integer Displays i& as it would show literally as a type.  ( h 1) ~ "P 1"  j ~ "Z"  ( e 1) ~ "P 1" h 0 and e 0 fail to type-check.b kind-integerb z n p i evaluates to z if i is zero, otherwise applies n to the absolute value of i if negative, or p to the absolute value of i if positive. h 0 and e 0 fail to type-check.¹ kind-integerInternal. Used to implement n and m.e kind-integerA positive number +x is represented as e x.While a standalone e 09 type-checks, it is not considered valid, so tools like P or M will reject it. e 0É itself is not rejected so that it can be used to pattern-match against k!s at the type-level if necessary.h kind-integerA negative number -x is represented as h x.While a standalone h 09 type-checks, it is not considered valid, so tools like P or M will reject it. h 0É itself is not rejected so that it can be used to pattern-match against k!s at the type-level if necessary.j kind-integerZero is represented as j.k kind-integerType-level version of º, only used as a kind.Zero is represented as j.A positive number +x is represented as e x.A negative number -x is represented as h x.» kind-integer ¼ kind-integer:Guaranteed to be greater than 0 only after going through P, M or  .½ kind-integer:Guaranteed to be greater than 0 only after going through P, M or  .l kind-integer7A explicitly bidirectional pattern synonym relating an   to a P constraint.As an  expression: Constructs an explicit   i value from an implicit P i constraint:   @i :: P i =>   i As a pattern: Matches on an explicit   i value bringing an implicit P i constraint into scope: f ::   i -> .. f si@  = ... both (si ::   i) and (P i) in scope ... m kind-integer m (¾ @1) == ¾ @(N 1)n kind-integer n (¾ @1) == ¾ @(P 1)o kind-integer o == ¾ @Zp kind-integerSingleton version of b.q kind-integerSingleton version of \. ¿ @(q (m (¾ @1))) == "N 1" ¿ @(q o) == "Z" ¿ @(q (n (¾ @1))) == "P 1" r kind-integerDemoted version of \.s kind-integerSingleton version of Y.t kind-integerDemoted version of Y.u kind-integerSingleton version of U.v kind-integerDemoted version of U.w kind-integer Inverse of v.x kind-integerConvert an implicit P to an explicit  .À kind-integer  contains only M integers.y kind-integer Term-level Prelude.º# representation of the type-level k.z kind-integerConvert a term-level Prelude.º into an extistentialized P wrapped in I.{ kind-integerSingleton version of H.Á kind-integerDemoted version of E.| kind-integerSingleton version of E.} kind-integer Identity. kind-integerDemoted version of D.~ kind-integerSingleton version of D. kind-integer Identity.€ kind-integerSingleton version of C. kind-integerSingleton version of @.‚ kind-integerDouble negation is identity.ƒ kind-integerSingleton version of =.„ kind-integerSingleton version of <.… kind-integerDemoted version of 3.Throws  where . would fail to type-check.† kind-integerSingleton version of 3.‡ kind-integerDemoted version of ..Throws  where . would fail to type-check.ˆ kind-integerSingleton version of ..‰ kind-integerSingleton version of ).Š kind-integerSingleton version of &.‹ kind-integerSingleton version of #.Œ kind-integerÕWe either get evidence that this function was instantiated with the same type-level ks, or Ã. kind-integerLike Œ, but if the type-level k5s aren't equal, this additionally provides proof of Ä or Å.Æ kind-integerOnly used for defining the   pattern synonym.Ž kind-integerReturn the term-level Prelude.º number corresponding to i. kind-integerConvert an explicit   i value into an implicit P i constraint. kind-integer Convert a Prelude.º number into an   n value, where n is a fresh type-level k.‘ kind-integerDemoted version of 8.Throws  where . would fail to type-check.’ kind-integerSingleton version of 8.™ kind-integer Displays i& as it would show literally as a term. ¿ @(Ç (m (¾ @1))) == "-1" ¿ @(Ç o) == "0" ¿ @(Ç (n (¾ @1))) == "1" š kind-integer Displays i& as it would show literally as a term. È ( h 1) ~ "-1" È j ~ "0" È ( e 1) ~ "1" h 0 and e 0 fail to type-check.§ kind-integerAs for Prelude.º.¨ kind-integerAs for Prelude.º.… kind-integer Dividend a. kind-integerDivisor b. kind-integer Remainder m.† kind-integer Dividend. kind-integerDivisor.‡ kind-integer Dividend a. kind-integerDivisor b. kind-integer Quotient q.ˆ kind-integer Dividend. kind-integerDivisor.‘ kind-integer Dividend a. kind-integerDivisor b. kind-integer Quotient q and remainder m.É kind-integer8Negative -> divRem RoundDown -> divRem RoundUp -> Result kind-integerDividend kind-integerDivisor’ kind-integer Dividend. kind-integerDivisor.“kjohmenH{bpPMxyIJz lŽ‚}\rqYtsUvuw<„C€@=ƒ&Š#‹)‰.ˆ‡3†…8’‘  ŒE|D~igfdcGFONLKa`_^];:9BA?>%$"!('-,+*210/7654[ZXWVTSRQ“kjohmenH{bpPMxyIJz lŽ‚}\rqYtsUvuw<„C€@=ƒ&Š#‹)‰.ˆ‡3†…8’‘  ŒE|D~igfdcGFONLKa`_^];:9BA?>%$"!('-,+*210/7654[ZXWVTSRQ.7378798<8„8Ê !"#$%&'()*+,-./0123456789:;<=>?@A BCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{4|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÄÆÇÄÆÈÉÊËÌÊËÍνÏ{zxÐÑÒÐÑÓÔÕÖÄר¹ºÙ¹ºÚÛÊËÜÊËÝÞß)kind-integer-0.6.0-3Z03omalljc5PFLInt2PyH KindInteger kind-integerKindInteger.RoundPfloordivmoddivModLDivModtruncatequotremquotRemroundShowLitEx DivdeByZeroRoundRoundUp RoundDown RoundZero RoundAway RoundHalfUp RoundHalfDown RoundHalfZero RoundHalfAway RoundHalfEven RoundHalfOddSRoundUp SRoundHalfOdd SRoundDown SRoundZero SRoundAway SRoundHalfUpSRoundHalfDownSRoundHalfZeroSRoundHalfAwaySRoundHalfEvenSRoundRoundHalfOddSym0RoundHalfEvenSym0RoundHalfAwaySym0RoundHalfZeroSym0RoundHalfDownSym0RoundHalfUpSym0 RoundAwaySym0 RoundZeroSym0 RoundDownSym0 RoundUpSym0SIntegerLCMSym1LCMSym0LCMGCDSym1GCDSym0GCDLog2Sym1Log2Sym0Log2DivSym3DivSym2DivSym1DivSym0RemSym3RemSym2RemSym1RemSym0Rem DivRemSym3 DivRemSym2 DivRemSym1 DivRemSym0DivRem^@#@$$$^@#@$$^@#@$^AbsEvenSym1EvenSym0EvenOddSym1OddSym0OddZagZigZigZagFromNaturalSym1FromNaturalSym0 FromNatural SomeIntegerNormalizedSym1NormalizedSym0 NormalizedKnownIntegerSym1KnownIntegerSym0 KnownIntegerShowsPrecLitSym3ShowsPrecLitSym2ShowsPrecLitSym1ShowsPrecLitSym0 ShowsPrecLit ShowsLitSym2 ShowsLitSym1 ShowsLitSym0ShowsLit ShowLitSym1 ShowLitSym0FoldSym4FoldSym3FoldSym2FoldSym1FoldSym0FoldPSym1PSym0NSym1NSym0NZSym0ZIntegerSNSPSZsFoldsShowLitshowLit sShowsLitshowsLit sShowsPrecLit showsPrecLit readPrecLit integerSing integerValsomeIntegerVal sFromNaturalsZigZag sZigZagReflsZagZig sZagZigReflsOddsEven sNegateReflsAbs%^sRemsDivsLog2sGCDsLCM sameInteger cmpInteger fromSIntegerwithKnownIntegerwithSomeSIntegerdivRemsDivRem$fSDecideInteger$fSingKindInteger $fSEqInteger $fPEqInteger $fSOrdInteger $fPOrdInteger$fSShowInteger$fPShowInteger $fPNumInteger$fTestCoercionIntegerSInteger$fTestEqualityIntegerSInteger$fShowSInteger $fOrdSInteger $fEqSInteger $fSNumInteger$fKnownInteger_Z$fSingIIntegeri$fReadSInteger$fKnownInteger_P$fKnownInteger_N$fReadSomeInteger$fShowSomeInteger$fOrdSomeInteger$fEqSomeIntegerHalfLTghc-prim GHC.TypesTrueMkRat ghc-bignumGHC.Num.NaturalNaturalRPatternSIntegerNatLCMNatGCDbaseGHC.RealGHC.Num-* KnownInteger_*singletons-base-3.2-7bfRBCwYYo2HhFPAwu4VNvText.Show.Singletons ShowsPrecShows PatternSIGHC.Num.Integer&singletons-3.0.2-6DFJ3q7gpuLEFti6VcMIOData.SingletonssingfromSingsNormalizedReflzigZagzagZig GHC.MaybeNothingLTGTpatternSIntegersShow_Show_ _divRemHalf