{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE Rank2Types #-} module Data.Array.Knead.Index.Nested.Shape ( C(..), value, paramWith, load, intersect, flattenIndex, Range(..), Shifted(..), Scalar(..), ) where import qualified Data.Array.Knead.Expression as Expr import qualified Data.Array.Knead.Parameter as Param import Data.Array.Knead.Expression (Exp, ) import qualified LLVM.Extra.Multi.Value.Memory as MultiValueMemory import qualified LLVM.Extra.Multi.Value as MultiValue import qualified LLVM.Extra.Arithmetic as A import qualified LLVM.Extra.Control as C import LLVM.Extra.Multi.Value (atom) import LLVM.Extra.Monad (liftR2) import qualified LLVM.Util.Loop as Loop import qualified LLVM.Core as LLVM import Foreign.Storable (Storable, ) import Foreign.Ptr (Ptr, ) import Data.Word (Word32, Word64) import Data.Int (Int32, Int64) import qualified Control.Monad.HT as Monad import Control.Applicative ((<$>)) value :: (C sh, Expr.Value val) => sh -> val sh value = Expr.lift0 . MultiValue.cons paramWith :: (Storable b, MultiValueMemory.C b, Expr.Value val) => Param.T p b -> (forall parameters. (Storable parameters, MultiValueMemory.C parameters) => (p -> parameters) -> (MultiValue.T parameters -> val b) -> a) -> a paramWith p f = Param.withMulti p (\get val -> f get (Expr.lift0 . val)) load :: (MultiValueMemory.C sh) => f sh -> LLVM.Value (Ptr (MultiValueMemory.Struct sh)) -> LLVM.CodeGenFunction r (MultiValue.T sh) load _ = MultiValueMemory.load intersect :: (C sh) => Exp sh -> Exp sh -> Exp sh intersect = Expr.liftM2 intersectCode flattenIndex :: (C sh) => MultiValue.T sh -> MultiValue.T (Index sh) -> LLVM.CodeGenFunction r (LLVM.Value Word32) flattenIndex sh ix = fmap snd $ flattenIndexRec sh ix class (MultiValue.C sh) => C sh where type Index sh :: * {- It would be better to restrict zipWith to matching shapes and turn shape intersection into a bound check. -} intersectCode :: MultiValue.T sh -> MultiValue.T sh -> LLVM.CodeGenFunction r (MultiValue.T sh) sizeCode :: MultiValue.T sh -> LLVM.CodeGenFunction r (LLVM.Value Word32) size :: sh -> Int {- | Result is @(size, flattenedIndex)@. @size@ must equal the result of 'sizeCode'. We use this for sharing intermediate results. -} flattenIndexRec :: MultiValue.T sh -> MultiValue.T (Index sh) -> LLVM.CodeGenFunction r (LLVM.Value Word32, LLVM.Value Word32) loop :: (Index sh ~ ix, Loop.Phi state) => (MultiValue.T ix -> state -> LLVM.CodeGenFunction r state) -> MultiValue.T sh -> state -> LLVM.CodeGenFunction r state instance C () where type Index () = () intersectCode _ _ = return $ MultiValue.cons () sizeCode _ = return A.one size _ = 1 flattenIndexRec _ _ = return (A.one, A.zero) loop = id class C sh => Scalar sh where scalar :: (Expr.Value val) => val sh zeroIndex :: (Expr.Value val) => f sh -> val (Index sh) instance Scalar () where scalar = Expr.lift0 $ MultiValue.Cons () zeroIndex _ = Expr.lift0 $ MultiValue.Cons () loopPrimitive :: (MultiValue.Repr LLVM.Value j ~ LLVM.Value j, Num j, LLVM.IsConst j, LLVM.IsInteger j, LLVM.CmpRet j, LLVM.CmpResult j ~ Bool, MultiValue.Additive i, MultiValue.IntegerConstant i, Loop.Phi state) => (MultiValue.T i -> state -> LLVM.CodeGenFunction r state) -> MultiValue.T j -> state -> LLVM.CodeGenFunction r state loopPrimitive code (MultiValue.Cons n) ptrStart = loopStart code n MultiValue.zero ptrStart loopStart :: (Num j, LLVM.IsConst j, LLVM.IsInteger j, LLVM.CmpRet j, LLVM.CmpResult j ~ Bool, MultiValue.Additive i, MultiValue.IntegerConstant i, Loop.Phi state) => (MultiValue.T i -> state -> LLVM.CodeGenFunction r state) -> LLVM.Value j -> MultiValue.T i -> state -> LLVM.CodeGenFunction r state loopStart code n start ptrStart = fmap fst $ C.fixedLengthLoop n (ptrStart, start) $ \(ptr, k) -> Monad.lift2 (,) (code k ptr) (MultiValue.add k $ MultiValue.fromInteger' 1) instance C Word32 where type Index Word32 = Word32 intersectCode = MultiValue.min sizeCode (MultiValue.Cons n) = return n size = fromIntegral flattenIndexRec (MultiValue.Cons n) (MultiValue.Cons i) = return (n, i) loop = loopPrimitive instance C Word64 where type Index Word64 = Word64 intersectCode = MultiValue.min sizeCode (MultiValue.Cons n) = LLVM.trunc n size = fromIntegral flattenIndexRec (MultiValue.Cons n) (MultiValue.Cons i) = Monad.lift2 (,) (LLVM.trunc n) (LLVM.trunc i) loop = loopPrimitive {- | Array dimensions and indexes cannot be negative, but computations in indices may temporarily yield negative values or we want to add negative values to indices. Maybe we should better have type Index Word64 = Int64? -} instance C Int32 where type Index Int32 = Int32 intersectCode = MultiValue.min sizeCode (MultiValue.Cons n) = LLVM.bitcast n size = fromIntegral flattenIndexRec (MultiValue.Cons n) (MultiValue.Cons i) = Monad.lift2 (,) (LLVM.bitcast n) (LLVM.bitcast i) loop = loopPrimitive instance C Int64 where type Index Int64 = Int64 intersectCode = MultiValue.min sizeCode (MultiValue.Cons n) = LLVM.trunc n size = fromIntegral flattenIndexRec (MultiValue.Cons n) (MultiValue.Cons i) = Monad.lift2 (,) (LLVM.trunc n) (LLVM.trunc i) loop = loopPrimitive {- | 'Range' denotes an inclusive range like those of the Haskell 98 standard @Array@ type from the @array@ package. E.g. the shape type @(Range Int32, Range Int64)@ is equivalent to the ix type @(Int32, Int64)@ for @Array@s. -} data Range n = Range n n singletonRange :: n -> Range n singletonRange n = Range n n class (MultiValue.Additive n, MultiValue.Real n, MultiValue.IntegerConstant n) => ToSize n where toSize :: MultiValue.T n -> LLVM.CodeGenFunction r (LLVM.Value Word32) instance ToSize Word32 where toSize (MultiValue.Cons n) = LLVM.adapt n instance ToSize Word64 where toSize (MultiValue.Cons n) = LLVM.adapt n instance ToSize Int32 where toSize (MultiValue.Cons n) = LLVM.bitcast n instance ToSize Int64 where toSize (MultiValue.Cons n) = LLVM.trunc n rangeSize :: (ToSize n) => Range (MultiValue.T n) -> LLVM.CodeGenFunction r (LLVM.Value Word32) rangeSize (Range from to) = toSize =<< MultiValue.add (MultiValue.fromInteger' 1) =<< MultiValue.sub to from instance (MultiValue.C n) => MultiValue.C (Range n) where type Repr f (Range n) = Range (MultiValue.Repr f n) cons (Range from to) = MultiValue.compose $ Range (MultiValue.cons from) (MultiValue.cons to) undef = MultiValue.compose $ singletonRange MultiValue.undef zero = MultiValue.compose $ singletonRange MultiValue.zero phis bb a = case MultiValue.decompose (singletonRange atom) a of Range a0 a1 -> fmap MultiValue.compose $ Monad.lift2 Range (MultiValue.phis bb a0) (MultiValue.phis bb a1) addPhis bb a b = case (MultiValue.decompose (singletonRange atom) a, MultiValue.decompose (singletonRange atom) b) of (Range a0 a1, Range b0 b1) -> MultiValue.addPhis bb a0 b0 >> MultiValue.addPhis bb a1 b1 type instance MultiValue.Decomposed f (Range pn) = Range (MultiValue.Decomposed f pn) type instance MultiValue.PatternTuple (Range pn) = Range (MultiValue.PatternTuple pn) instance (MultiValue.Compose n) => MultiValue.Compose (Range n) where type Composed (Range n) = Range (MultiValue.Composed n) compose (Range from to) = case (MultiValue.compose from, MultiValue.compose to) of (MultiValue.Cons f, MultiValue.Cons t) -> MultiValue.Cons (Range f t) instance (MultiValue.Decompose pn) => MultiValue.Decompose (Range pn) where decompose (Range pfrom pto) (MultiValue.Cons (Range from to)) = Range (MultiValue.decompose pfrom (MultiValue.Cons from)) (MultiValue.decompose pto (MultiValue.Cons to)) instance (Integral n, ToSize n) => C (Range n) where type Index (Range n) = n intersectCode = MultiValue.modifyF2 (singletonRange atom) (singletonRange atom) $ \(Range fromN toN) (Range fromM toM) -> Monad.lift2 Range (MultiValue.max fromN fromM) (MultiValue.min toN toM) sizeCode = rangeSize . MultiValue.decompose (singletonRange atom) size (Range from to) = fromIntegral $ to-from+1 flattenIndexRec rngValue i = case MultiValue.decompose (singletonRange atom) rngValue of rng@(Range from _to) -> Monad.lift2 (,) (rangeSize rng) (toSize =<< MultiValue.sub i from) loop code rngValue ptrStart = case MultiValue.decompose (singletonRange atom) rngValue of rng@(Range from _to) -> do {- FIXME: rangeSize converts to Word32 which is overly restrictive here. -} n <- rangeSize rng loopStart code n from ptrStart {- | 'Shifted' denotes a range defined by the start index and the length. -} data Shifted n = Shifted {shiftedOffset, shiftedSize :: n} singletonShifted :: n -> Shifted n singletonShifted n = Shifted n n instance (MultiValue.C n) => MultiValue.C (Shifted n) where type Repr f (Shifted n) = Shifted (MultiValue.Repr f n) cons (Shifted offset len) = MultiValue.compose $ Shifted (MultiValue.cons offset) (MultiValue.cons len) undef = MultiValue.compose $ singletonShifted MultiValue.undef zero = MultiValue.compose $ singletonShifted MultiValue.zero phis bb a = case MultiValue.decompose (singletonShifted atom) a of Shifted a0 a1 -> fmap MultiValue.compose $ Monad.lift2 Shifted (MultiValue.phis bb a0) (MultiValue.phis bb a1) addPhis bb a b = case (MultiValue.decompose (singletonShifted atom) a, MultiValue.decompose (singletonShifted atom) b) of (Shifted a0 a1, Shifted b0 b1) -> MultiValue.addPhis bb a0 b0 >> MultiValue.addPhis bb a1 b1 type instance MultiValue.Decomposed f (Shifted pn) = Shifted (MultiValue.Decomposed f pn) type instance MultiValue.PatternTuple (Shifted pn) = Shifted (MultiValue.PatternTuple pn) instance (MultiValue.Compose n) => MultiValue.Compose (Shifted n) where type Composed (Shifted n) = Shifted (MultiValue.Composed n) compose (Shifted offset len) = case (MultiValue.compose offset, MultiValue.compose len) of (MultiValue.Cons o, MultiValue.Cons l) -> MultiValue.Cons (Shifted o l) instance (MultiValue.Decompose pn) => MultiValue.Decompose (Shifted pn) where decompose (Shifted poffset plen) (MultiValue.Cons (Shifted offset len)) = Shifted (MultiValue.decompose poffset (MultiValue.Cons offset)) (MultiValue.decompose plen (MultiValue.Cons len)) instance (Integral n, ToSize n) => C (Shifted n) where type Index (Shifted n) = n intersectCode = MultiValue.modifyF2 (singletonShifted atom) (singletonShifted atom) $ \(Shifted offsetN lenN) (Shifted offsetM lenM) -> do offset <- MultiValue.max offsetN offsetM endN <- MultiValue.add offsetN lenN endM <- MultiValue.add offsetM lenM end <- MultiValue.min endN endM Shifted offset <$> MultiValue.sub end offset sizeCode = toSize . shiftedSize . MultiValue.decompose (singletonShifted atom) size (Shifted _offset len) = fromIntegral len flattenIndexRec shapeValue i = case MultiValue.decompose (singletonShifted atom) shapeValue of Shifted offset len -> Monad.lift2 (,) (toSize len) (toSize =<< MultiValue.sub i offset) loop code rngValue ptrStart = case MultiValue.decompose (singletonShifted atom) rngValue of Shifted from len -> do n <- toSize len loopStart code n from ptrStart instance (C n, C m) => C (n,m) where type Index (n,m) = (Index n, Index m) intersectCode a b = case (MultiValue.unzip a, MultiValue.unzip b) of ((an,am), (bn,bm)) -> Monad.lift2 MultiValue.zip (intersectCode an bn) (intersectCode am bm) sizeCode nm = case MultiValue.unzip nm of (n,m) -> liftR2 A.mul (sizeCode n) (sizeCode m) size (n,m) = size n * size m flattenIndexRec nm ij = case (MultiValue.unzip nm, MultiValue.unzip ij) of ((n,m), (i,j)) -> do (ns, il) <- flattenIndexRec n i (ms, jl) <- flattenIndexRec m j Monad.lift2 (,) (A.mul ns ms) (A.add jl =<< A.mul ms il) loop code nm = case MultiValue.unzip nm of (n,m) -> loop (\i -> loop (\j -> code (MultiValue.zip i j)) m) n instance (C n, C m, C l) => C (n,m,l) where type Index (n,m,l) = (Index n, Index m, Index l) intersectCode a b = case (MultiValue.unzip3 a, MultiValue.unzip3 b) of ((ai,aj,ak), (bi,bj,bk)) -> Monad.lift3 MultiValue.zip3 (intersectCode ai bi) (intersectCode aj bj) (intersectCode ak bk) sizeCode nml = case MultiValue.unzip3 nml of (n,m,l) -> liftR2 A.mul (sizeCode n) $ liftR2 A.mul (sizeCode m) (sizeCode l) size (n,m,l) = size n * size m * size l flattenIndexRec nml ijk = case (MultiValue.unzip3 nml, MultiValue.unzip3 ijk) of ((n,m,l), (i,j,k)) -> do (ns, il) <- flattenIndexRec n i (ms, jl) <- flattenIndexRec m j x0 <- A.add jl =<< A.mul ms il (ls, kl) <- flattenIndexRec l k x1 <- A.add kl =<< A.mul ls x0 sz <- A.mul ns =<< A.mul ms ls return (sz, x1) loop code nml = case MultiValue.unzip3 nml of (n,m,l) -> loop (\i -> loop (\j -> loop (\k -> code (MultiValue.zip3 i j k)) l) m) n