{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ExistentialQuantification #-} module Data.Array.Knead.Parameter where import qualified LLVM.Extra.Multi.Value.Memory as MultiValueMemory import qualified LLVM.Extra.Multi.Value as MultiValue import qualified LLVM.Extra.Class as Class import qualified LLVM.Extra.Memory as Memory import Foreign.Storable.Tuple () import Foreign.Storable (Storable, ) import qualified Control.Category as Cat import qualified Control.Arrow as Arr import qualified Control.Applicative as App import Control.Applicative (pure, liftA2, ) import Data.Tuple.HT (mapFst, ) import Data.Word (Word32, ) {- | This data type is for parameters of parameterized signal generators and causal processes. It is better than using plain functions of type @p -> a@ since it allows for numeric instances and we can make explicit, whether a parameter is constant. We recommend to use parameters for atomic types. Although a parameter of type @T p (a,b)@ is possible, it means that the whole parameter is variable if only one of the pair elements is variable. This way you may miss optimizations. -} data T p a = Constant a | Variable (p -> a) get :: T p a -> (p -> a) get (Constant a) = const a get (Variable f) = f {- | The call @value param v@ requires that @v@ represents the same value as @valueTupleOf (get param p)@ for some @p@. However @v@ might be the result of a load operation and @param@ might be a constant. In this case it is more efficient to use @valueTupleOf (get param undefined)@ since the constant is translated to an LLVM constant that allows for certain optimizations. This is the main function for taking advantage of a constant parameter in low-level implementations. For simplicity we do not omit constant parameters in the parameter struct since this would mean to construct types at runtime and might become ugly. Instead we just check using 'value' at the according places in LLVM code whether a parameter is constant and ignore the parameter from the struct in this case. In many cases there will be no speed benefit because the parameter will be loaded to a register anyway. It can only lead to speed-up if subsequent optimizations can precompute constant expressions. Another example is 'drop' where a loop with constant loop count can be generated. For small loop counts and simple loop bodies the loop might get unrolled. -} valueTuple :: (Class.MakeValueTuple tuple, Class.ValueTuple tuple ~ value) => T p tuple -> value -> value valueTuple = genericValue Class.valueTupleOf multiValue :: (MultiValue.C a) => T p a -> MultiValue.T a -> MultiValue.T a multiValue = genericValue MultiValue.cons genericValue :: (a -> value) -> T p a -> value -> value genericValue cons p v = case p of Constant a -> cons a Variable _ -> v {- | This function provides specialised variants of 'get' and 'value', that use the unit type for constants and thus save space in parameter structures. -} {-# INLINE withTuple #-} withTuple :: (Storable tuple, Class.MakeValueTuple tuple, Class.ValueTuple tuple ~ value, Memory.C value) => T p tuple -> (forall parameters. (Storable parameters, Class.MakeValueTuple parameters, Memory.C (Class.ValueTuple parameters)) => (p -> parameters) -> (Class.ValueTuple parameters -> value) -> a) -> a withTuple (Constant a) f = f (const ()) (\() -> Class.valueTupleOf a) withTuple (Variable v) f = f v id {-# INLINE withMulti #-} withMulti :: (Storable b, MultiValueMemory.C b) => T p b -> (forall parameters. (Storable parameters, MultiValueMemory.C parameters) => (p -> parameters) -> (MultiValue.T parameters -> MultiValue.T b) -> a) -> a withMulti = with MultiValue.cons {-# INLINE with #-} with :: (Storable b, MultiValueMemory.C b) => (b -> MultiValue.T b) -> T p b -> (forall parameters. (Storable parameters, MultiValueMemory.C parameters) => (p -> parameters) -> (MultiValue.T parameters -> MultiValue.T b) -> a) -> a with cons p f = case p of Constant b -> f (const ()) (\_ -> cons b) Variable v -> f v id data Tunnel p a = forall t. (Storable t, MultiValueMemory.C t) => Tunnel (p -> t) (MultiValue.T t -> MultiValue.T a) tunnel :: (Storable a, MultiValueMemory.C a) => (a -> MultiValue.T a) -> T p a -> Tunnel p a tunnel cons p = case p of Constant b -> Tunnel (const ()) (\_ -> cons b) Variable v -> Tunnel v id word32 :: T p Int -> T p Word32 word32 = fmap fromIntegral infixl 0 $# ($#) :: (T p a -> b) -> (a -> b) ($#) f a = f (pure a) {- | @.@ can be used for fetching a parameter from a super-parameter. -} instance Cat.Category T where id = Variable id Constant f . _ = Constant f Variable f . Constant a = Constant (f a) Variable f . Variable g = Variable (f . g) {- | @arr@ is useful for lifting parameter selectors to our parameter type without relying on the constructor. -} instance Arr.Arrow T where arr = Variable first f = Variable (mapFst (get f)) {- | Useful for splitting @T p (a,b)@ into @T p a@ and @T p b@ using @fmap fst@ and @fmap snd@. -} instance Functor (T p) where fmap f (Constant a) = Constant (f a) fmap f (Variable g) = Variable (f . g) {- | Useful for combining @T p a@ and @T p b@ to @T p (a,b)@ using @liftA2 (,)@. However, we do not recommend to do so because the result parameter can only be constant if both operands are constant. -} instance App.Applicative (T p) where pure a = Constant a Constant f <*> Constant a = Constant (f a) f <*> a = Variable (\p -> get f p (get a p)) instance Monad (T p) where return = pure Constant x >>= f = f x Variable x >>= f = Variable (\p -> get (f (x p)) p) instance Num a => Num (T p a) where (+) = liftA2 (+) (-) = liftA2 (-) (*) = liftA2 (*) negate = fmap negate abs = fmap abs signum = fmap signum fromInteger = pure . fromInteger instance Fractional a => Fractional (T p a) where (/) = liftA2 (/) fromRational = pure . fromRational