{-# LANGUAGE TypeFamilies #-} module Data.Array.Knead.Simple.PhysicalPrivate where import qualified Data.Array.Knead.Simple.Private as Sym import qualified Data.Array.Knead.Shape as Shape import qualified Data.Array.Knead.Expression as Expr import Data.Array.Knead.Expression (Exp, unExp) import Data.Array.Knead.Code (getElementPtr) import qualified LLVM.Extra.Multi.Value.Memory as MultiValueMemory import qualified LLVM.Extra.Multi.Value as MultiValue import qualified LLVM.Extra.Arithmetic as A import qualified LLVM.Extra.Control as C import qualified LLVM.Extra.Memory as Memory import qualified LLVM.Core as LLVM import Foreign.Ptr (Ptr, ) import qualified Control.Applicative.HT as App import Control.Monad.HT (void, ) import Control.Applicative ((<$>), ) import Data.Tuple.HT (mapSnd, ) writeArray :: (Shape.C sh, Memory.C a) => MultiValue.T sh -> (MultiValue.T (Shape.Index sh) -> LLVM.CodeGenFunction r a) -> LLVM.Value (Ptr (Memory.Struct a)) -> LLVM.CodeGenFunction r (LLVM.Value (Ptr (Memory.Struct a))) writeArray sh code ptr = do let clear ix p = do flip Memory.store p =<< code ix A.advanceArrayElementPtr p Shape.loop clear sh ptr mapAccumLLoop :: (MultiValue.C acc, MultiValueMemory.C b, MultiValueMemory.Struct b ~ bm, Shape.C sh, Shape.Index sh ~ ix) => (MultiValue.T ix -> LLVM.CodeGenFunction r (MultiValue.T a)) -> (Exp acc -> Exp a -> Exp (acc, b)) -> MultiValue.T sh -> LLVM.Value (Ptr bm) -> MultiValue.T acc -> LLVM.CodeGenFunction r (LLVM.Value (Ptr bm), MultiValue.T acc) mapAccumLLoop code f n yPtr accInit = do let step k0 (ptr0, acc0) = do x <- code k0 (acc1,y) <- MultiValue.unzip <$> Expr.unliftM2 f acc0 x Memory.store y ptr0 ptr1 <- A.advanceArrayElementPtr ptr0 return (ptr1, acc1) Shape.loop step n (yPtr, accInit) mapAccumLSimple :: (Shape.C sh, MultiValueMemory.C sh, Shape.C n, MultiValueMemory.C n, MultiValue.C acc, MultiValueMemory.C x, MultiValueMemory.C y) => (Exp acc -> Exp x -> Exp (acc,y)) -> Sym.Array sh acc -> Sym.Array (sh, n) x -> LLVM.Value (Ptr (MultiValueMemory.Struct (sh,n))) -> LLVM.Value (Ptr (MultiValueMemory.Struct y)) -> LLVM.CodeGenFunction r () mapAccumLSimple f (Sym.Array _ initCode) (Sym.Array esh code) sptr ptr = do (sh, n) <- MultiValue.unzip <$> Shape.load esh sptr let step ix ptrStart = do accInit <- initCode ix fst <$> mapAccumLLoop (code . MultiValue.zip ix) f n ptrStart accInit void $ Shape.loop step sh ptr mapAccumLSequence :: (Shape.C n, MultiValueMemory.C n, MultiValue.C acc, MultiValueMemory.C final, MultiValueMemory.C x, MultiValueMemory.C y) => (Exp acc -> Exp x -> Exp (acc,y)) -> (Exp acc -> Exp final) -> Exp acc -> Sym.Array n x -> LLVM.Value (Ptr (MultiValueMemory.Struct final)) -> LLVM.Value (Ptr (MultiValueMemory.Struct n)) -> LLVM.Value (Ptr (MultiValueMemory.Struct y)) -> LLVM.CodeGenFunction r () mapAccumLSequence f final initExp (Sym.Array esh code) accPtr sptr yPtr = do n <- Shape.load esh sptr accInit <- unExp initExp accExit <- snd <$> mapAccumLLoop code f n yPtr accInit flip Memory.store accPtr =<< Expr.unliftM1 final accExit mapAccumL :: (Shape.C sh, MultiValueMemory.C sh, Shape.C n, MultiValueMemory.C n, MultiValue.C acc, MultiValueMemory.C final, MultiValueMemory.C x, MultiValueMemory.C y) => (Exp acc -> Exp x -> Exp (acc,y)) -> (Exp acc -> Exp final) -> Sym.Array sh acc -> Sym.Array (sh, n) x -> (LLVM.Value (Ptr (MultiValueMemory.Struct sh)), LLVM.Value (Ptr (MultiValueMemory.Struct final))) -> (LLVM.Value (Ptr (MultiValueMemory.Struct (sh,n))), LLVM.Value (Ptr (MultiValueMemory.Struct y))) -> LLVM.CodeGenFunction r () mapAccumL f final (Sym.Array _ initCode) (Sym.Array esh code) (_, accPtr) (sptr, yPtr) = do (sh, n) <- MultiValue.unzip <$> Shape.load esh sptr let step ix (accPtr0, yPtrStart) = do accInit <- initCode ix (ptrStop, accExit) <- mapAccumLLoop (code . MultiValue.zip ix) f n yPtrStart accInit flip Memory.store accPtr0 =<< Expr.unliftM1 final accExit accPtr1 <- A.advanceArrayElementPtr accPtr0 return (accPtr1, ptrStop) void $ Shape.loop step sh (accPtr,yPtr) foldOuterL :: (Shape.C sh, MultiValueMemory.C sh, Shape.C n, MultiValueMemory.C n, MultiValueMemory.C a) => (Exp a -> Exp b -> Exp a) -> Sym.Array sh a -> Sym.Array (n,sh) b -> LLVM.Value (Ptr (MultiValueMemory.Struct sh)) -> LLVM.Value (Ptr (MultiValueMemory.Struct a)) -> LLVM.CodeGenFunction r () foldOuterL f (Sym.Array _ initCode) (Sym.Array esh code) sptr ptr = do sh <- Shape.load (Expr.snd esh) sptr n <- MultiValue.fst <$> unExp esh void $ writeArray sh initCode ptr let step k ix ptr0 = do b <- code $ MultiValue.zip k ix a0 <- Memory.load ptr0 a1 <- Expr.unliftM2 f a0 b Memory.store a1 ptr0 A.advanceArrayElementPtr ptr0 void $ Shape.loop (\k () -> void $ Shape.loop (step k) sh ptr) n () {- | We need a scalar Shape type @n@. Scalar Shape types could be distinguished from other Shape types by the fact that you can convert any Index into a Shape. -} mapFilter :: (Shape.Sequence n, MultiValueMemory.C n, MultiValueMemory.C b) => (Exp a -> Exp b) -> (Exp a -> Exp Bool) -> Sym.Array n a -> LLVM.Value (Ptr (MultiValueMemory.Struct n)) -> LLVM.Value (Ptr (MultiValueMemory.Struct b)) -> LLVM.CodeGenFunction r (MultiValue.T n) mapFilter f p (Sym.Array esh code) sptr ptr = do n <- Shape.load esh sptr let step ix (dstPtr,dstIx) = do a <- code ix MultiValue.Cons c <- Expr.unliftM1 p a C.ifThen c (dstPtr,dstIx) (do flip Memory.store dstPtr =<< Expr.unliftM1 f a App.lift2 (,) (A.advanceArrayElementPtr dstPtr) (MultiValue.inc dstIx)) Shape.sequenceShapeFromIndex . snd =<< Shape.loop step n (ptr, MultiValue.zero) filterOuter :: (Shape.Sequence n, MultiValueMemory.C n, Shape.C sh, MultiValueMemory.C sh, MultiValueMemory.C a) => Sym.Array n Bool -> Sym.Array (n,sh) a -> LLVM.Value (Ptr (MultiValueMemory.Struct (n,sh))) -> LLVM.Value (Ptr (MultiValueMemory.Struct a)) -> LLVM.CodeGenFunction r (MultiValue.T (n,sh)) filterOuter (Sym.Array _eish selectCode) (Sym.Array esh code) sptr ptr = do (n,sh) <- MultiValue.unzip <$> Shape.load esh sptr let step k (dstPtr0,dstK) = do MultiValue.Cons c <- selectCode k C.ifThen c (dstPtr0,dstK) (do dstPtr1 <- writeArray sh (code . MultiValue.zip k) dstPtr0 (,) dstPtr1 <$> MultiValue.inc dstK) finalN <- Shape.sequenceShapeFromIndex . snd =<< Shape.loop step n (ptr, MultiValue.zero) return $ MultiValue.zip finalN sh scatterMaybe :: (Shape.C sh0, Shape.Index sh0 ~ ix0, Shape.C sh1, Shape.Index sh1 ~ ix1, MultiValueMemory.C sh1, MultiValueMemory.C a) => (Exp a -> Exp a -> Exp a) -> Sym.Array sh1 a -> Sym.Array sh0 (Maybe (ix1, a)) -> LLVM.Value (Ptr (MultiValueMemory.Struct sh1)) -> LLVM.Value (Ptr (MultiValueMemory.Struct a)) -> LLVM.CodeGenFunction r () scatterMaybe accum (Sym.Array esh codeInit) (Sym.Array eish codeMap) sptr ptr = do sh <- Shape.load esh sptr void $ writeArray sh codeInit ptr ish <- unExp eish let fill ix () = do (MultiValue.Cons c, (jx, a)) <- mapSnd MultiValue.unzip . MultiValue.splitMaybe <$> codeMap ix C.ifThen c () $ do p <- getElementPtr sh ptr jx flip Memory.store p =<< Expr.unliftM2 (flip accum) a =<< Memory.load p Shape.loop fill ish () scatter :: (Shape.C sh0, Shape.Index sh0 ~ ix0, Shape.C sh1, Shape.Index sh1 ~ ix1, MultiValueMemory.C sh1, MultiValueMemory.C a) => (Exp a -> Exp a -> Exp a) -> Sym.Array sh1 a -> Sym.Array sh0 (Shape.Index sh1, a) -> LLVM.Value (Ptr (MultiValueMemory.Struct sh1)) -> LLVM.Value (Ptr (MultiValueMemory.Struct a)) -> LLVM.CodeGenFunction r () scatter accum (Sym.Array esh codeInit) (Sym.Array eish codeMap) sptr ptr = do sh <- Shape.load esh sptr void $ writeArray sh codeInit ptr ish <- unExp eish let fill ix () = do (jx, a) <- MultiValue.unzip <$> codeMap ix p <- getElementPtr sh ptr jx flip Memory.store p =<< Expr.unliftM2 (flip accum) a =<< Memory.load p Shape.loop fill ish () addDimension :: (Shape.C n, MultiValueMemory.C n, Shape.Index n ~ k, Shape.C sh, MultiValueMemory.C sh, MultiValueMemory.C b) => Exp n -> (Exp k -> Exp a -> Exp b) -> Sym.Array sh a -> LLVM.Value (Ptr (MultiValueMemory.Struct (sh,n))) -> LLVM.Value (Ptr (MultiValueMemory.Struct b)) -> LLVM.CodeGenFunction r () addDimension en select (Sym.Array esh code) sptr ptr = do (sh,n) <- MultiValue.unzip <$> Shape.load (Expr.zip esh en) sptr let fill ix ptr0 = do a <- code ix writeArray n (\k -> Expr.unliftM2 select k a) ptr0 void $ Shape.loop fill sh ptr