{-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Data.LabeledGraph -- Copyright : (c) The University of Glasgow 2002, Jean-Philippe Bernardy 2012 -- License : BSD-style -- -- Maintainer : JP Bernardy -- Stability : experimental -- Portability : GHC -- -- A version of the graph algorithms described in: -- -- /Structuring Depth-First Search Algorithms in Haskell/, -- by David King and John Launchbury. -- -- Adapted to labeled graphs by JP Bernardy. -- ----------------------------------------------------------------------------- module Data.Graph{-( -- * External interface -- At present the only one with a "nice" external interface stronglyConnComp, stronglyConnCompR, SCC(..), flattenSCC, flattenSCCs, -- * Graphs Graph, Table, Bounds, Edge, Vertex, -- ** Building graphs graphFromEdges, graphFromEdges', buildG, transposeG, -- reverseE, -- ** Graph properties vertices, edges, outdegree, indegree, -- * Algorithms dfs, dff, topSort, components, scc, bcc, -- tree, back, cross, forward, reachable, path, module Data.LabeledTree ) -} where import Control.Monad.ST import Data.Array.ST (STArray, newArray, readArray, writeArray) import Data.LabeledTree (Tree(Node), Forest, (::>)((::>)) ) import Data.STRef import Control.DeepSeq (NFData(rnf)) import Data.Maybe import Data.Array import Data.List import qualified Data.Map as M ------------------------------------------------------------------------- -- - -- External interface -- - ------------------------------------------------------------------------- {- -- | Strongly connected component. data SCC vertex = AcyclicSCC vertex -- ^ A single vertex that is not -- in any cycle. | CyclicSCC [vertex] -- ^ A maximal set of mutually -- reachable vertices. instance NFData a => NFData (SCC a) where rnf (AcyclicSCC v) = rnf v rnf (CyclicSCC vs) = rnf vs -- | The vertices of a list of strongly connected components. flattenSCCs :: [SCC a] -> [a] flattenSCCs = concatMap flattenSCC -- | The vertices of a strongly connected component. flattenSCC :: SCC vertex -> [vertex] flattenSCC (AcyclicSCC v) = [v] flattenSCC (CyclicSCC vs) = vs -- | The strongly connected components of a directed graph, topologically -- sorted. stronglyConnComp :: Ord key => [(node, key, [key])] -- ^ The graph: a list of nodes uniquely identified by keys, -- with a list of keys of nodes this node has edges to. -- The out-list may contain keys that don't correspond to -- nodes of the graph; such edges are ignored. -> [SCC node] stronglyConnComp edges0 = map get_node (stronglyConnCompR edges0) where get_node (AcyclicSCC (n, _, _)) = AcyclicSCC n get_node (CyclicSCC triples) = CyclicSCC [n | (n,_,_) <- triples] -- | The strongly connected components of a directed graph, topologically -- sorted. The function is the same as 'stronglyConnComp', except that -- all the information about each node retained. -- This interface is used when you expect to apply 'SCC' to -- (some of) the result of 'SCC', so you don't want to lose the -- dependency information. stronglyConnCompR :: Ord key => [(node, key, [key])] -- ^ The graph: a list of nodes uniquely identified by keys, -- with a list of keys of nodes this node has edges to. -- The out-list may contain keys that don't correspond to -- nodes of the graph; such edges are ignored. -> [SCC (node, key, [key])] -- ^ Topologically sorted stronglyConnCompR [] = [] -- added to avoid creating empty array in graphFromEdges -- SOF stronglyConnCompR edges0 = map decode forest where (graph, vertex_fn,_) = graphFromEdges edges0 forest = scc graph decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v] | otherwise = AcyclicSCC (vertex_fn v) decode other = CyclicSCC (dec other []) where dec (Node v ts) vs = vertex_fn v : foldr dec vs ts mentions_itself v = v `elem` (graph ! v) -} ------------------------------------------------------------------------- -- - -- Graphs -- - ------------------------------------------------------------------------- -- | Abstract representation of vertices. type Vertex = Int -- | Table indexed by a contiguous set of vertices. type Table a = Array Vertex a -- | Adjacency list representation of a graph, mapping each vertex to its -- list of successors. type Graph e = Table [(e,Vertex)] -- | The bounds of a 'Table'. type Bounds = (Vertex, Vertex) -- | An edge from the first vertex to the second. type Edge e = (Vertex,e,Vertex) -- | Graph structure + colour on the vertices data ColouredGraph c e = ColouredGraph (Graph e) (Colouring c) type Colouring a = Vertex -> a showWithColor gr color = concat $ map showNode $ range $ bounds gr where showNode n = show n ++ ": " ++ show (color n) ++ " -> " ++ show (gr!n) ++ "\n" showDotFile gr = "digraph name {\n" ++ "rankdir=LR;\n" ++ (concatMap showEdge $ edges gr) ++ "}\n" where showEdge (from, t, to) = show from ++ " -> " ++ show to ++ " [label = \"" ++ show t ++ "\"];\n" instance (Show c, Show e) => Show (ColouredGraph c e) where show (ColouredGraph gr col) = showWithColor gr col -- | All vertices of a graph. vertices :: Graph l -> [Vertex] vertices = indices -- | All edges of a graph. edges :: Graph e -> [Edge e] edges g = [ (v,l,w) | v <- vertices g, (l,w) <- g!v ] mapT :: (Vertex -> a -> b) -> Table a -> Table b mapT f t = array (bounds t) [ (,) v (f v (t!v)) | v <- indices t ] -- | Build a graph from a list of edges. buildG :: Bounds -> [Edge e] -> Graph e buildG bounds0 edges0 = accumArray (flip (:)) [] bounds0 [(v, (l,w)) | (v,l,w) <- edges0] -- | The graph obtained by reversing all edges. transposeG :: Graph e -> Graph e transposeG g = buildG (bounds g) (reverseE g) reverseE :: Graph e -> [Edge e] reverseE g = [ (w, l, v) | (v, l, w) <- edges g ] -- | Reverse all the edges of a graph reverseG :: Graph e -> Graph e reverseG g = buildG (bounds g) (reverseE g) -- | A table of the count of edges from each node. outdegree :: Graph e -> Table Int outdegree = mapT numEdges where numEdges _ ws = length ws -- | A table of the count of edges into each node. indegree :: Graph e -> Table Int indegree = outdegree . transposeG -- | Identical to 'graphFromEdges', except that the return value -- does not include the function which maps keys to vertices. This -- version of 'graphFromEdges' is for backwards compatibility. graphFromEdges' :: Ord key => [(node, key, [(e,key)])] -> (Graph e, Vertex -> (node, key, [(e,key)])) graphFromEdges' x = (a,b) where (a,b,_) = graphFromEdges x -- | Build a graph from a list of nodes uniquely identified by keys, -- with a list of keys of nodes this node should have edges to. -- The out-list may contain keys that don't correspond to -- nodes of the graph; they are ignored. graphFromEdges :: forall key e node. Ord key => [(node, key, [(e,key)])] -> (Graph e, Vertex -> (node, key, [(e,key)]), key -> Maybe Vertex) graphFromEdges edges0 = (graph, \v -> vertex_map ! v, key_vertex) where max_v = length edges0 - 1 bounds0 = (0,max_v) :: (Vertex, Vertex) sorted_edges = sortBy lt edges0 edges1 = zipWith (,) [0..] sorted_edges graph :: Graph e graph = array bounds0 [(,) v [(e,v') | (e,k) <- ks, let Just v' = key_vertex k] | (,) v (_, _, ks) <- edges1] key_map = array bounds0 [(,) v k | (,) v (_, k, _ ) <- edges1] vertex_map = array bounds0 edges1 (_,k1,_) `lt` (_,k2,_) = k1 `compare` k2 key_vertex :: key -> Maybe Vertex -- returns Nothing for non-interesting vertices key_vertex k = findVertex 0 max_v where findVertex a b | a > b = Nothing findVertex a b = case compare k (key_map ! mid) of LT -> findVertex a (mid-1) EQ -> Just mid GT -> findVertex (mid+1) b where mid = (a + b) `div` 2 ------------------------------------------------------------------------- -- - -- Depth first search -- - ------------------------------------------------------------------------- -- | A spanning forest of the graph, obtained from a depth-first search of -- the graph starting from each vertex in an unspecified order. dff :: Graph e -> [Tree e Vertex] dff g = dfs g (vertices g) -- | A spanning forest of the part of the graph reachable from the listed -- vertices, obtained from a depth-first search of the graph starting at -- each of the listed vertices in order. dfs :: Graph e -> [Vertex] -> [Tree e Vertex] dfs g vs = map dropLabel $ prune (bounds g) (map (\v -> error "dfs: no top-level label" ::> generate g v) vs) dropLabel ~(_ ::> t) = t generate :: Graph e -> Vertex -> Tree e Vertex generate g v = Node v [e ::> generate g v' | (e,v') <- g!v] prune :: Bounds -> Forest e Vertex -> Forest e Vertex prune bnds ts = run bnds (chop ts) chop :: Forest e Vertex -> SetM s (Forest e Vertex) chop [] = return [] chop ((e ::> Node v ts) : us) = do visited <- contains v if visited then chop us else do include v as <- chop ts bs <- chop us return ((e ::> Node v as) : bs) -- A monad holding a set of vertices visited so far. -- Use the ST for constant-time primitives. newtype SetM s a = SetM { runSetM :: STArray s Vertex Bool -> ST s a } instance Monad (SetM s) where return x = SetM $ const (return x) SetM v >>= f = SetM $ \ s -> do { x <- v s; runSetM (f x) s } run :: Bounds -> (forall s. SetM s a) -> a run bnds act = runST (newArray bnds False >>= runSetM act) contains :: Vertex -> SetM s Bool contains v = SetM $ \ m -> readArray m v include :: Vertex -> SetM s () include v = SetM $ \ m -> writeArray m v True ------------------------------------------------------------------------- -- - -- Algorithms -- - ------------------------------------------------------------------------- ------------------------------------------------------------ -- Algorithm 1: depth first search numbering ------------------------------------------------------------ type DList a = a -> a dconcat :: [DList a] -> DList a dconcat = foldr (.) id preorder' :: [e] -> Tree e a -> DList [(a,[e])] preorder' es (Node a ts) = ((a,es) :) . preorderF' es ts preorderF' :: [e] -> Forest e a -> DList [(a,[e])] preorderF' es ts = dconcat [ preorder' (e : es) t | (e ::> t) <- ts] second f (a,b) = (a,f b) preorderF :: [Tree e a] -> [(a,[e])] preorderF ts = dconcat [ preorder' [] t | t <- ts] [] tabulate :: Bounds -> [Vertex] -> Table Int tabulate bnds vs = array bnds (zipWith (,) vs [1..]) preArr :: Bounds -> [Tree e Vertex] -> Table Int preArr bnds = tabulate bnds . map fst . preorderF ------------------------------------------------------------ -- Algorithm 2: topological sorting ------------------------------------------------------------ postorder :: Tree e a -> [a] -> [a] postorder (Node a ts) = postorderF (map dropLabel ts) . (a :) postorderF :: [Tree e a] -> [a] -> [a] postorderF ts = foldr (.) id $ map postorder ts postOrd :: Graph e -> [Vertex] postOrd g = postorderF (dff g) [] -- | A topological sort of the graph. -- The order is partially specified by the condition that a vertex /i/ -- precedes /j/ whenever /j/ is reachable from /i/ but not vice versa. topSort :: Graph e -> [Vertex] topSort = reverse . postOrd ------------------------------------------------------------ -- Algorithm 3: connected components ------------------------------------------------------------ -- | The connected components of a graph. -- Two vertices are connected if there is a path between them, traversing -- edges in either direction. components :: Graph e -> [Tree e Vertex] components = dff . undirected undirected :: Graph e -> Graph e undirected g = buildG (bounds g) (edges g ++ reverseE g) ------------------------------------------------------------ -- Algorithm 4: strongly connected components ------------------------------------------------------------ -- | The strongly connected components of a graph. scc :: Graph e -> [Tree e Vertex] scc g = dfs g (reverse (postOrd (transposeG g))) ------------------------------------------------------------ -- Algorithm 6: Finding reachable vertices ------------------------------------------------------------ -- | A list of vertices reachable from a given vertex. reachable :: Graph e -> Vertex -> [(Vertex,[e])] reachable g v = preorderF (dfs g [v]) -- | Is the second vertex reachable from the first? path :: Graph e -> Vertex -> Vertex -> Bool path g v w = w `elem` map fst (reachable g v) ------------------------------------------------------------ -- Algorithm 7: Biconnected components ------------------------------------------------------------ {- -- | The biconnected components of a graph. -- An undirected graph is biconnected if the deletion of any vertex -- leaves it connected. bcc :: Graph -> Forest [Vertex] bcc g = (concat . map bicomps . map (do_label g dnum)) forest where forest = dff g dnum = preArr (bounds g) forest do_label :: Graph e -> Table Int -> Tree e Vertex -> Tree e (Vertex,Int,Int) do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us where us = map (do_label g dnum) ts lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v] ++ [lu | Node (_,_,lu) _ <- us]) bicomps :: Tree (Vertex,Int,Int) -> Forest [Vertex] bicomps (Node (v,_,_) ts) = [ Node (v:vs) us | (_,Node vs us) <- map collect ts] collect :: Tree e (Vertex,Int,Int) -> (Int, Tree e [Vertex]) collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs) where collected = map collect ts vs = concat [ ws | (lw, Node ws _) <- collected, lw (key -> (colour, [(edgeLabel, key)])) -> [key] -> ST stTag ([Vertex], ColouredGraph colour edgeLabel) unfoldManyST gen seeds = do mtab <- newSTRef M.empty allNodes <- newSTRef [] uidRef <- newSTRef firstId let -- cyc :: a -> ST s Vertex cyc src = do probe <- memTabFind mtab src case probe of Just result -> return result Nothing -> do v <- allocId uidRef memTabBind src v mtab let (lab, deps) = gen src ws <- mapM (cyc . snd) deps let res = (v, lab, [(fst d, w) | d <- deps | w <- ws]) put allNodes res return v mapM_ cyc seeds list <- readSTRef allNodes seedsResult <- (return . map fromJust) =<< mapM (memTabFind mtab) seeds lastId <- readSTRef uidRef let cycamore = array (firstId, lastId-1) [(i, k) | (i, a, k) <- list] let labels = array (firstId, lastId-1) [(i, a) | (i, a, k) <- list] return (seedsResult, ColouredGraph cycamore (labels!)) where firstId = 0::Vertex memTabFind mt key = return . M.lookup key =<< readSTRef mt memTabBind key val mt = modifySTRef mt (M.insert key val) unfold :: forall key edgeLabel colour stTag. (Ord key) => (key -> (colour, [(edgeLabel, key)])) -> key -> (Vertex, ColouredGraph colour edgeLabel) unfold f r = (r', res) where ([r'], res) = unfoldMany f [r] unfoldMany :: forall key edgeLabel colour stTag. (Ord key) => (key -> (colour, [(edgeLabel, key)])) -> [key] -> ([Vertex], ColouredGraph colour edgeLabel) unfoldMany f roots = runST (unfoldManyST f roots) fold' :: Eq c => c -> (Vertex -> [(b,c)] -> c) -> Graph b -> Vertex -> c fold' z f gr v = scan' z f gr v scan' :: Eq c => c -> (Vertex -> [(b,c)] -> c) -> Graph b -> Colouring c scan' bot f gr = (finalTbl !) where finalTbl = fixedPoint updateTbl initialTbl initialTbl = listArray bnds (replicate (rangeSize bnds) bot) fixedPoint f x = fp x where fp z = if z == z' then z else fp z' where z' = f z updateTbl tbl = listArray bnds $ map recompute $ vertices gr where recompute v = f v [(b, tbl!k) | (b, k) <- gr!v] bnds = bounds gr scan :: Eq c => c -> (a -> [(e,c)] -> c) -> ColouredGraph a e -> ColouredGraph c e scan bot f (ColouredGraph gr a) = ColouredGraph gr (scan' bot f' gr) where f' v kids = f (a v) kids