{-# LANGUAGE LambdaCase #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE RecursiveDo #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE DeriveFunctor #-} {-# OPTIONS_GHC -fno-warn-overlapping-patterns #-} -- TODO: remove {-# OPTIONS_GHC -fno-warn-unused-binds #-} -- TODO: remove -- {-# OPTIONS_GHC -O0 #-} module LambdaCube.Compiler.Infer ( Binder (..), SName, Lit(..), Visibility(..) , Exp (..), Neutral (..), ExpType, GlobalEnv , pattern Var, pattern CaseFun, pattern TyCaseFun, pattern App_, app_ , pattern Con, pattern TyCon, pattern Pi, pattern Lam, pattern Fun, pattern ELit, pattern Func, pattern LabelEnd, pattern FL, pattern UFL, unFunc_ , outputType, boolType, trueExp , down, Subst (..), free, subst , initEnv, Env(..), pattern EBind2 , SI(..), Range(..) -- todo: remove , Info(..), Infos, listAllInfos, listTypeInfos, listTraceInfos , inference, IM , nType, conType, neutType, neutType', appTy, mkConPars, makeCaseFunPars, makeCaseFunPars' , MaxDB, unfixlabel , ErrorMsg, showError, errorRange , FName (..) ) where import Data.Monoid import Data.Char import Data.Maybe import Data.List import qualified Data.Set as Set import qualified Data.Map as Map import Control.Monad.Except import Control.Monad.Reader import Control.Monad.Writer import Control.Monad.State import Control.Arrow hiding ((<+>)) import Control.DeepSeq import LambdaCube.Compiler.Pretty hiding (Doc, braces, parens) import LambdaCube.Compiler.Lexer import LambdaCube.Compiler.Parser -------------------------------------------------------------------------------- core expression representation data Exp = TType | ELit_ Lit | Con_ !MaxDB ConName !Int{-number of ereased arguments applied-} [Exp] | TyCon_ !MaxDB TyConName [Exp] | Pi_ !MaxDB Visibility Exp Exp | Lam_ !MaxDB Exp | Neut Neutral deriving (Show) pattern ELit a <- (unfixlabel -> ELit_ a) where ELit = ELit_ data Neutral = Fun_ !MaxDB FunName [Exp]{-local vars-} !Int{-number of missing parameters-} [Exp]{-given parameters, reversed-} Neutral{-unfolded expression-}{-not neut?-} | CaseFun__ !MaxDB CaseFunName [Exp] Neutral | TyCaseFun__ !MaxDB TyCaseFunName [Exp] Neutral | App__ !MaxDB Neutral Exp | Var_ !Int -- De Bruijn variable | LabelEnd_ Exp -- not neut? | Delta (SData ([Exp] -> Exp)) -- not neut? deriving (Show) data ConName = ConName FName Int{-ordinal number, e.g. Zero:0, Succ:1-} Type data TyConName = TyConName FName Int{-num of indices-} Type [(ConName, Type)]{-constructors-} CaseFunName data FunName = FunName FName (Maybe Exp) Type data CaseFunName = CaseFunName FName Type Int{-num of parameters-} data TyCaseFunName = TyCaseFunName FName Type type Type = Exp type ExpType = (Exp, Type) type SExp2 = SExp' ExpType instance Show ConName where show (ConName n _ _) = show n instance Eq ConName where ConName _ n _ == ConName _ n' _ = n == n' instance Show TyConName where show (TyConName n _ _ _ _) = show n instance Eq TyConName where TyConName n _ _ _ _ == TyConName n' _ _ _ _ = n == n' instance Show FunName where show (FunName n _ _) = show n instance Eq FunName where FunName n _ _ == FunName n' _ _ = n == n' instance Show CaseFunName where show (CaseFunName n _ _) = CaseName $ show n instance Eq CaseFunName where CaseFunName n _ _ == CaseFunName n' _ _ = n == n' instance Show TyCaseFunName where show (TyCaseFunName n _) = MatchName $ show n instance Eq TyCaseFunName where TyCaseFunName n _ == TyCaseFunName n' _ = n == n' data FName = CFName !Int (SData String) | FVecScalar | FEqCT | FT2 | Fcoe | FparEval | Ft2C | FprimFix | FUnit | FInt | FWord | FNat | FBool | FFloat | FString | FChar | FOrdering | FVecS | FEmpty | FHList | FEq | FOrd | FNum | FSigned | FComponent | FIntegral | FFloating | FOutput | FType | FHCons | FHNil | FZero | FSucc | FFalse | FTrue | FLT | FGT | FEQ | FTT | FNil | FCons | FSplit deriving (Eq, Ord) -- todo: use module indentifier instead of hash cFName mod i (RangeSI (Range l _), s) = fromMaybe (CFName n $ SData s) $ lookup s fntable where n = hash (sourceName l) * 2^32 + sourceLine l * 2^16 + sourceColumn l * 2^3 -- + i hash = foldr (\c x -> ord c + x*2) 0 fntable = [ (,) "'VecScalar" FVecScalar , (,) "'EqCT" FEqCT , (,) "'T2" FT2 , (,) "coe" Fcoe , (,) "parEval" FparEval , (,) "t2C" Ft2C , (,) "primFix" FprimFix , (,) "'Unit" FUnit , (,) "'Int" FInt , (,) "'Word" FWord , (,) "'Nat" FNat , (,) "'Bool" FBool , (,) "'Float" FFloat , (,) "'String" FString , (,) "'Char" FChar , (,) "'Ordering" FOrdering , (,) "'VecS" FVecS , (,) "'Empty" FEmpty , (,) "'HList" FHList , (,) "'Eq" FEq , (,) "'Ord" FOrd , (,) "'Num" FNum , (,) "'Signed" FSigned , (,) "'Component" FComponent , (,) "'Integral" FIntegral , (,) "'Floating" FFloating , (,) "'Output" FOutput , (,) "'Type" FType , (,) "HCons" FHCons , (,) "HNil" FHNil , (,) "Zero" FZero , (,) "Succ" FSucc , (,) "False" FFalse , (,) "True" FTrue , (,) "LT" FLT , (,) "GT" FGT , (,) "EQ" FEQ , (,) "TT" FTT , (,) "Nil" FNil , (,) "Cons" FCons , (,) "'Split" FSplit ] instance Show FName where show (CFName _ (SData s)) = s show s = fromMaybe (error "show") $ lookup s $ map (\(a, b) -> (b, a)) fntable -------------------------------------------------------------------------------- auxiliary functions and patterns infixl 2 `App`, `app_` infixr 1 :~> pattern NoLE <- (isNoLabelEnd -> True) isNoLabelEnd (LabelEnd_ _) = False isNoLabelEnd _ = True pattern Fun' f vs i xs n <- Fun_ _ f vs i xs n where Fun' f vs i xs n = Fun_ (foldMap maxDB_ vs <> foldMap maxDB_ xs {- <> iterateN i lowerDB (maxDB_ n)-}) f vs i xs n pattern Fun f i xs n = Fun' f [] i xs n pattern UTFun a t b <- (unfixlabel -> Neut (Fun (FunName a _ t) _ (reverse -> b) NoLE)) pattern UFunN a b <- UTFun a _ b pattern DFun_ fn xs <- Fun fn 0 (reverse -> xs) (Delta _) where DFun_ fn@(FunName n _ _) xs = Fun fn 0 (reverse xs) d where d = Delta $ SData $ getFunDef n $ \xs -> Neut $ Fun fn 0 (reverse xs) d pattern TFun' a t b = DFun_ (FunName a Nothing t) b pattern TFun a t b = Neut (TFun' a t b) pattern CaseFun_ a b c <- CaseFun__ _ a b c where CaseFun_ a b c = CaseFun__ (maxDB_ c <> foldMap maxDB_ b) a b c pattern TyCaseFun_ a b c <- TyCaseFun__ _ a b c where TyCaseFun_ a b c = TyCaseFun__ (foldMap maxDB_ b <> maxDB_ c) a b c pattern App_ a b <- App__ _ a b where App_ a b = App__ (maxDB_ a <> maxDB_ b) a b pattern CaseFun a b c = Neut (CaseFun_ a b c) pattern TyCaseFun a b c = Neut (TyCaseFun_ a b c) pattern App a b <- Neut (App_ (Neut -> a) b) pattern Var a = Neut (Var_ a) conParams (conTypeName -> TyConName _ _ _ _ (CaseFunName _ _ pars)) = pars mkConPars n (snd . getParams . unfixlabel -> TyCon (TyConName _ _ _ _ (CaseFunName _ _ pars)) xs) = take (min n pars) xs --mkConPars 0 TType = [] -- ? mkConPars n x@Neut{} = error $ "mkConPars!: " ++ ppShow x mkConPars n x = error $ "mkConPars: " ++ ppShow (n, x) makeCaseFunPars te n = case neutType te n of (unfixlabel -> TyCon (TyConName _ _ _ _ (CaseFunName _ _ pars)) xs) -> take pars xs x -> error $ "makeCaseFunPars: " ++ ppShow x makeCaseFunPars' te n = case neutType' te n of (unfixlabel -> TyCon (TyConName _ _ _ _ (CaseFunName _ _ pars)) xs) -> take pars xs pattern Closed :: () => Up a => a -> a pattern Closed a <- a where Closed a = closedExp a pattern Con x n y <- Con_ _ x n y where Con x n y = Con_ (foldMap maxDB_ y) x n y pattern ConN s a <- Con (ConName s _ _) _ a pattern ConN' s a <- Con (ConName _ s _) _ a tCon s i t a = Con (ConName s i t) 0 a tCon_ k s i t a = Con (ConName s i t) k a pattern TyCon x y <- TyCon_ _ x y where TyCon x y = TyCon_ (foldMap maxDB_ y) x y pattern Lam y <- Lam_ _ y where Lam y = Lam_ (lowerDB (maxDB_ y)) y pattern Pi v x y <- Pi_ _ v x y where Pi v x y = Pi_ (maxDB_ x <> lowerDB (maxDB_ y)) v x y pattern TyConN s a <- TyCon (TyConName s _ _ _ _) a pattern TTyCon s t a <- TyCon (TyConName s _ t _ _) a tTyCon s t a cs = TyCon (TyConName s (error "todo: inum") t (map ((,) (error "tTyCon")) cs) $ CaseFunName (error "TTyCon-A") (error "TTyCon-B") $ length a) a pattern TTyCon0 s <- (unfixlabel -> TyCon (TyConName s _ TType _ _) []) tTyCon0 s cs = Closed $ TyCon (TyConName s 0 TType (map ((,) (error "tTyCon0")) cs) $ CaseFunName (error "TTyCon0-A") (error "TTyCon0-B") 0) [] pattern a :~> b = Pi Visible a b pattern Unit <- TTyCon0 FUnit where Unit = tTyCon0 FUnit [Unit] pattern TInt <- TTyCon0 FInt where TInt = tTyCon0 FInt $ error "cs 1" pattern TNat <- TTyCon0 FNat where TNat = tTyCon0 FNat $ error "cs 3" pattern TBool <- TTyCon0 FBool where TBool = tTyCon0 FBool $ error "cs 4" pattern TFloat <- TTyCon0 FFloat where TFloat = tTyCon0 FFloat $ error "cs 5" pattern TString <- TTyCon0 FString where TString = tTyCon0 FString $ error "cs 6" pattern TChar <- TTyCon0 FChar where TChar = tTyCon0 FChar $ error "cs 7" pattern TOrdering <- TTyCon0 FOrdering where TOrdering = tTyCon0 FOrdering $ error "cs 8" pattern TVec a b <- TyConN FVecS {-(TType :~> TNat :~> TType)-} [b, a] pattern Empty s <- TyCon (TyConName FEmpty _ _ _ _) [EString s] where Empty s = TyCon (TyConName FEmpty (error "todo: inum2_") (TString :~> TType) (error "todo: tcn cons 3_") $ error "Empty") [EString s] pattern TT <- ConN' _ _ where TT = Closed (tCon FTT 0 Unit []) pattern Zero <- ConN FZero _ where Zero = Closed (tCon FZero 0 TNat []) pattern Succ n <- ConN FSucc (n:_) where Succ n = tCon FSucc 1 (TNat :~> TNat) [n] pattern CstrT t a b = Neut (CstrT' t a b) pattern CstrT' t a b = TFun' FEqCT (TType :~> Var 0 :~> Var 1 :~> TType) [t, a, b] pattern Coe a b w x = TFun Fcoe (TType :~> TType :~> CstrT TType (Var 1) (Var 0) :~> Var 2 :~> Var 2) [a,b,w,x] pattern ParEval t a b = TFun FparEval (TType :~> Var 0 :~> Var 1 :~> Var 2) [t, a, b] pattern T2 a b = TFun FT2 (TType :~> TType :~> TType) [a, b] pattern CSplit a b c <- UFunN FSplit [a, b, c] pattern EInt a = ELit (LInt a) pattern EFloat a = ELit (LFloat a) pattern EChar a = ELit (LChar a) pattern EString a = ELit (LString a) pattern EBool a <- (getEBool -> Just a) where EBool = mkBool pattern ENat n <- (fromNatE -> Just n) where ENat = toNatE pattern ENat' n <- (fromNatE' -> Just n) toNatE :: Int -> Exp toNatE 0 = Zero toNatE n | n > 0 = Closed (Succ (toNatE (n - 1))) fromNatE :: Exp -> Maybe Int fromNatE (unfixlabel -> ConN' 0 _) = Just 0 fromNatE (unfixlabel -> ConN' 1 [n]) = (1 +) <$> fromNatE n fromNatE _ = Nothing fromNatE' :: Exp -> Maybe Int fromNatE' (unfixlabel -> Zero) = Just 0 fromNatE' (unfixlabel -> Succ n) = (1 +) <$> fromNatE' n fromNatE' _ = Nothing mkBool False = Closed $ tCon FFalse 0 TBool [] mkBool True = Closed $ tCon FTrue 1 TBool [] getEBool (unfixlabel -> ConN' 0 _) = Just False getEBool (unfixlabel -> ConN' 1 _) = Just True getEBool _ = Nothing mkOrdering x = Closed $ case x of LT -> tCon FLT 0 TOrdering [] EQ -> tCon FEQ 1 TOrdering [] GT -> tCon FGT 2 TOrdering [] conTypeName :: ConName -> TyConName conTypeName (ConName _ _ t) = case snd $ getParams t of TyCon n _ -> n outputType = tTyCon0 FOutput $ error "cs 9" boolType = TBool trueExp = EBool True -------------------------------------------------------------------------------- label handling pattern LabelEnd x = Neut (LabelEnd_ x) --pmLabel' :: FunName -> [Exp] -> Int -> [Exp] -> Exp -> Exp pmLabel' _ (FunName _ _ _) _ 0 as (Neut (Delta (SData f))) = f $ reverse as pmLabel' md f vs i xs (unfixlabel -> Neut y) = Neut $ Fun_ md f vs i xs y pmLabel' _ f _ i xs y = error $ "pmLabel: " ++ show (f, i, length xs, y) pmLabel :: FunName -> [Exp] -> Int -> [Exp] -> Exp -> Exp pmLabel f vs i xs e = pmLabel' (foldMap maxDB_ vs <> foldMap maxDB_ xs) f vs (i + numLams e) xs (Neut $ dropLams e) dropLams (unfixlabel -> Lam x) = dropLams x dropLams (unfixlabel -> Neut x) = x numLams (unfixlabel -> Lam x) = 1 + numLams x numLams x = 0 pattern FL' y <- Fun' f _ 0 xs (LabelEnd_ y) pattern FL y <- Neut (FL' y) pattern Func n def ty xs <- (mkFunc -> Just (n, def, ty, xs)) mkFunc (Neut (Fun (FunName n (Just def) ty) 0 xs LabelEnd_{})) | Just def' <- removeLams (length xs) def = Just (n, def', ty, xs) mkFunc _ = Nothing removeLams 0 (LabelEnd x) = Just x removeLams n (Lam x) | n > 0 = Lam <$> removeLams (n-1) x removeLams _ _ = Nothing pattern UFL y <- (unFunc -> Just y) unFunc (Neut (Fun' (FunName _ (Just def) _) _ n xs y)) = Just $ iterateN n Lam $ Neut y unFunc _ = Nothing unFunc_ (Neut (Fun' _ _ n xs y)) = Just $ iterateN n Lam $ Neut y unFunc_ _ = Nothing unfixlabel (FL y) = unfixlabel y unfixlabel a = a -------------------------------------------------------------------------------- low-level toolbox class Subst b a where subst_ :: Int -> MaxDB -> b -> a -> a subst i x a = subst_ i (maxDB_ x) x a down :: (Subst Exp a, Up a{-used-}) => Int -> a -> Maybe a down t x | used t x = Nothing | otherwise = Just $ subst_ t mempty (error "impossible: down" :: Exp) x instance Eq Exp where FL a == a' = a == a' a == FL a' = a == a' Lam a == Lam a' = a == a' Pi a b c == Pi a' b' c' = (a, b, c) == (a', b', c') Con a n b == Con a' n' b' = (a, n, b) == (a', n', b') TyCon a b == TyCon a' b' = (a, b) == (a', b') TType == TType = True ELit l == ELit l' = l == l' Neut a == Neut a' = a == a' _ == _ = False instance Eq Neutral where Fun' f vs i a _ == Fun' f' vs' i' a' _ = (f, vs, i, a) == (f', vs', i', a') FL' a == a' = a == Neut a' a == FL' a' = Neut a == a' LabelEnd_ a == LabelEnd_ a' = a == a' CaseFun_ a b c == CaseFun_ a' b' c' = (a, b, c) == (a', b', c') TyCaseFun_ a b c == TyCaseFun_ a' b' c' = (a, b, c) == (a', b', c') App_ a b == App_ a' b' = (a, b) == (a', b') Var_ a == Var_ a' = a == a' _ == _ = False free x | cmpDB 0 x = mempty free x = fold (\i k -> Set.fromList [k - i | k >= i]) 0 x instance Up Exp where up_ 0 = \_ e -> e up_ n = f where f i e | cmpDB i e = e f i e = case e of Lam_ md b -> Lam_ (upDB n md) (f (i+1) b) Pi_ md h a b -> Pi_ (upDB n md) h (f i a) (f (i+1) b) Con_ md s pn as -> Con_ (upDB n md) s pn $ map (f i) as TyCon_ md s as -> TyCon_ (upDB n md) s $ map (f i) as Neut x -> Neut $ up_ n i x used i e | cmpDB i e = False | otherwise = ((getAny .) . fold ((Any .) . (==))) i e fold f i = \case Lam b -> fold f (i+1) b Pi _ a b -> fold f i a <> fold f (i+1) b Con _ _ as -> foldMap (fold f i) as TyCon _ as -> foldMap (fold f i) as TType -> mempty ELit{} -> mempty Neut x -> fold f i x maxDB_ = \case Lam_ c _ -> c Pi_ c _ _ _ -> c Con_ c _ _ _ -> c TyCon_ c _ _ -> c TType -> mempty ELit{} -> mempty Neut x -> maxDB_ x closedExp = \case Lam_ _ c -> Lam_ mempty c Pi_ _ a b c -> Pi_ mempty a (closedExp b) c Con_ _ a b c -> Con_ mempty a b (closedExp <$> c) TyCon_ _ a b -> TyCon_ mempty a (closedExp <$> b) e@TType{} -> e e@ELit{} -> e Neut a -> Neut $ closedExp a instance Subst Exp Exp where subst_ i0 dx x = f i0 where f i (Neut n) = substNeut n where substNeut e | cmpDB i e = Neut e substNeut e = case e of Var_ k -> case compare k i of GT -> Var $ k - 1; LT -> Var k; EQ -> up (i - i0) x CaseFun_ s as n -> evalCaseFun s (f i <$> as) (substNeut n) TyCaseFun_ s as n -> evalTyCaseFun s (f i <$> as) (substNeut n) App_ a b -> app_ (substNeut a) (f i b) Fun_ md fn vs c xs v -> pmLabel' (md <> upDB i dx) fn (f i <$> vs) c (f i <$> xs) $ f (i + c) $ Neut v LabelEnd_ a -> LabelEnd $ f i a d@Delta{} -> Neut d f i e | cmpDB i e = e f i e = case e of Lam_ md b -> Lam_ (md <> upDB i dx) (f (i+1) b) Con_ md s n as -> Con_ (md <> upDB i dx) s n $ f i <$> as Pi_ md h a b -> Pi_ (md <> upDB i dx) h (f i a) (f (i+1) b) TyCon_ md s as -> TyCon_ (md <> upDB i dx) s $ f i <$> as instance Up Neutral where up_ 0 = \_ e -> e up_ n = f where f i e | cmpDB i e = e f i e = case e of Var_ k -> Var_ $ if k >= i then k+n else k CaseFun__ md s as ne -> CaseFun__ (upDB n md) s (up_ n i <$> as) (up_ n i ne) TyCaseFun__ md s as ne -> TyCaseFun__ (upDB n md) s (up_ n i <$> as) (up_ n i ne) App__ md a b -> App__ (upDB n md) (up_ n i a) (up_ n i b) Fun_ md fn vs c x y -> Fun_ (upDB n md) fn (up_ n i <$> vs) c (up_ n i <$> x) $ up_ n (i + c) y LabelEnd_ x -> LabelEnd_ $ up_ n i x d@Delta{} -> d used i e | cmpDB i e = False | otherwise = ((getAny .) . fold ((Any .) . (==))) i e fold f i = \case Var_ k -> f i k CaseFun_ _ as n -> foldMap (fold f i) as <> fold f i n TyCaseFun_ _ as n -> foldMap (fold f i) as <> fold f i n App_ a b -> fold f i a <> fold f i b Fun' _ vs j x d -> foldMap (fold f i) vs <> foldMap (fold f i) x -- <> fold f (i+j) d LabelEnd_ x -> fold f i x Delta{} -> mempty maxDB_ = \case Var_ k -> varDB k CaseFun__ c _ _ _ -> c TyCaseFun__ c _ _ _ -> c App__ c a b -> c Fun_ c _ _ _ _ _ -> c LabelEnd_ x -> maxDB_ x Delta{} -> mempty closedExp = \case x@Var_{} -> error "impossible" CaseFun__ _ a as n -> CaseFun__ mempty a (closedExp <$> as) (closedExp n) TyCaseFun__ _ a as n -> TyCaseFun__ mempty a (closedExp <$> as) (closedExp n) App__ _ a b -> App__ mempty (closedExp a) (closedExp b) Fun_ _ f l i x y -> Fun_ mempty f l i (closedExp <$> x) y LabelEnd_ a -> LabelEnd_ (closedExp a) d@Delta{} -> d instance (Subst x a, Subst x b) => Subst x (a, b) where subst_ i dx x (a, b) = (subst_ i dx x a, subst_ i dx x b) varType' :: Int -> [Exp] -> Exp varType' i vs = vs !! i varType :: String -> Int -> Env -> (Binder, Exp) varType err n_ env = f n_ env where f n (EAssign i (x, _) es) = second (subst i x) $ f (if n < i then n else n+1) es f n (EBind2 b t es) = if n == 0 then (b, up 1 t) else second (up 1) $ f (n-1) es f n (ELet2 _ (x, t) es) = if n == 0 then (BLam Visible{-??-}, up 1 t) else second (up 1) $ f (n-1) es f n e = either (error $ "varType: " ++ err ++ "\n" ++ show n_ ++ "\n" ++ ppShow env) (f n) $ parent e -------------------------------------------------------------------------------- reduction evalCaseFun a ps (Con n@(ConName _ i _) _ vs) | i /= (-1) = foldl app_ (ps !!! (i + 1)) vs | otherwise = error "evcf" where xs !!! i | i >= length xs = error $ "!!! " ++ show a ++ " " ++ show i ++ " " ++ show n ++ "\n" ++ ppShow ps xs !!! i = xs !! i evalCaseFun a b (FL c) = evalCaseFun a b c evalCaseFun a b (Neut c) = CaseFun a b c evalCaseFun a b x = error $ "evalCaseFun: " ++ show (a, x) evalTyCaseFun a b (FL c) = evalTyCaseFun a b c evalTyCaseFun a b (Neut c) = TyCaseFun a b c evalTyCaseFun (TyCaseFunName FType ty) (_: t: f: _) TType = t evalTyCaseFun (TyCaseFunName n ty) (_: t: f: _) (TyCon (TyConName n' _ _ _ _) vs) | n == n' = foldl app_ t vs --evalTyCaseFun (TyCaseFunName n ty) [_, t, f] (DFun (FunName n' _) vs) | n == n' = foldl app_ t vs -- hack evalTyCaseFun (TyCaseFunName n ty) (_: t: f: _) _ = f evalCoe a b (FL x) d = evalCoe a b x d evalCoe a b TT d = d evalCoe a b t d = Coe a b t d {- todo: generate DFun n@(FunName "natElim" _) [a, z, s, Succ x] -> let -- todo: replace let with better abstraction sx = s `app_` x in sx `app_` eval (DFun n [a, z, s, x]) MT "natElim" [_, z, s, Zero] -> z DFun na@(FunName "finElim" _) [m, z, s, n, ConN "FSucc" [i, x]] -> let six = s `app_` i `app_` x-- todo: replace let with better abstraction in six `app_` eval (DFun na [m, z, s, i, x]) MT "finElim" [m, z, s, n, ConN "FZero" [i]] -> z `app_` i -} getFunDef s f = case s of FEqCT -> \case (t: a: b: _) -> cstr t a b FT2 -> \case (a: b: _) -> t2 a b Ft2C -> \case (a: b: _) -> t2C a b Fcoe -> \case (a: b: t: d: _) -> evalCoe a b t d FparEval -> \case (t: a: b: _) -> parEval t a b where parEval _ (LabelEnd x) _ = LabelEnd x parEval _ _ (LabelEnd x) = LabelEnd x parEval t a b = ParEval t a b CFName _ (SData s) -> case s of "unsafeCoerce" -> \case xs@(_: _: x@NonNeut: _) -> x; xs -> f xs "reflCstr" -> \case (a: _) -> TT "hlistNilCase" -> \case (_: x: (unfixlabel -> Con n@(ConName _ 0 _) _ _): _) -> x; xs -> f xs "hlistConsCase" -> \case (_: _: _: x: (unfixlabel -> Con n@(ConName _ 1 _) _ (_: _: a: b: _)): _) -> x `app_` a `app_` b; xs -> f xs -- general compiler primitives "primAddInt" -> \case (EInt i: EInt j: _) -> EInt (i + j); xs -> f xs "primSubInt" -> \case (EInt i: EInt j: _) -> EInt (i - j); xs -> f xs "primModInt" -> \case (EInt i: EInt j: _) -> EInt (i `mod` j); xs -> f xs "primSqrtFloat" -> \case (EFloat i: _) -> EFloat $ sqrt i; xs -> f xs "primRound" -> \case (EFloat i: _) -> EInt $ round i; xs -> f xs "primIntToFloat" -> \case (EInt i: _) -> EFloat $ fromIntegral i; xs -> f xs "primIntToNat" -> \case (EInt i: _) -> ENat $ fromIntegral i; xs -> f xs "primCompareInt" -> \case (EInt x: EInt y: _) -> mkOrdering $ x `compare` y; xs -> f xs "primCompareFloat" -> \case (EFloat x: EFloat y: _) -> mkOrdering $ x `compare` y; xs -> f xs "primCompareChar" -> \case (EChar x: EChar y: _) -> mkOrdering $ x `compare` y; xs -> f xs "primCompareString" -> \case (EString x: EString y: _) -> mkOrdering $ x `compare` y; xs -> f xs -- LambdaCube 3D specific primitives "PrimGreaterThan" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (>) t x y -> r; xs -> f xs "PrimGreaterThanEqual" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (>=) t x y -> r; xs -> f xs "PrimLessThan" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (<) t x y -> r; xs -> f xs "PrimLessThanEqual" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (<=) t x y -> r; xs -> f xs "PrimEqualV" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (==) t x y -> r; xs -> f xs "PrimNotEqualV" -> \case (t: _: _: _: _: _: _: x: y: _) | Just r <- twoOpBool (/=) t x y -> r; xs -> f xs "PrimEqual" -> \case (t: _: _: x: y: _) | Just r <- twoOpBool (==) t x y -> r; xs -> f xs "PrimNotEqual" -> \case (t: _: _: x: y: _) | Just r <- twoOpBool (/=) t x y -> r; xs -> f xs "PrimSubS" -> \case (_: _: _: _: x: y: _) | Just r <- twoOp (-) x y -> r; xs -> f xs "PrimSub" -> \case (_: _: x: y: _) | Just r <- twoOp (-) x y -> r; xs -> f xs "PrimAddS" -> \case (_: _: _: _: x: y: _) | Just r <- twoOp (+) x y -> r; xs -> f xs "PrimAdd" -> \case (_: _: x: y: _) | Just r <- twoOp (+) x y -> r; xs -> f xs "PrimMulS" -> \case (_: _: _: _: x: y: _) | Just r <- twoOp (*) x y -> r; xs -> f xs "PrimMul" -> \case (_: _: x: y: _) | Just r <- twoOp (*) x y -> r; xs -> f xs "PrimDivS" -> \case (_: _: _: _: _: x: y: _) | Just r <- twoOp_ (/) div x y -> r; xs -> f xs "PrimDiv" -> \case (_: _: _: _: _: x: y: _) | Just r <- twoOp_ (/) div x y -> r; xs -> f xs "PrimModS" -> \case (_: _: _: _: _: x: y: _) | Just r <- twoOp_ modF mod x y -> r; xs -> f xs "PrimMod" -> \case (_: _: _: _: _: x: y: _) | Just r <- twoOp_ modF mod x y -> r; xs -> f xs "PrimNeg" -> \case (_: x: _) | Just r <- oneOp negate x -> r; xs -> f xs "PrimAnd" -> \case (EBool x: EBool y: _) -> EBool (x && y); xs -> f xs "PrimOr" -> \case (EBool x: EBool y: _) -> EBool (x || y); xs -> f xs "PrimXor" -> \case (EBool x: EBool y: _) -> EBool (x /= y); xs -> f xs "PrimNot" -> \case (TNat: _: _: EBool x: _) -> EBool $ not x; xs -> f xs _ -> f _ -> f cstr = f [] where f z ty a a' = f_ z (unfixlabel ty) (unfixlabel a) (unfixlabel a') f_ _ _ a a' | a == a' = Unit f_ ns typ (LabelEnd a) (LabelEnd a') = f ns typ a a' f_ ns typ (Con a n xs) (Con a' n' xs') | a == a' && n == n' && length xs == length xs' = ff ns (foldl appTy (conType typ a) $ mkConPars n typ) $ zip xs xs' f_ ns typ (TyCon a xs) (TyCon a' xs') | a == a' && length xs == length xs' = ff ns (nType a) $ zip xs xs' f_ (_: ns) typ{-down?-} (down 0 -> Just a) (down 0 -> Just a') = f ns typ a a' f_ ns TType (Pi h a b) (Pi h' a' b') | h == h' = t2 (f ns TType a a') (f ((a, a'): ns) TType b b') f_ [] TType (UFunN FVecScalar [a, b]) (UFunN FVecScalar [a', b']) = t2 (f [] TNat a a') (f [] TType b b') f_ [] TType (UFunN FVecScalar [a, b]) (TVec a' b') = t2 (f [] TNat a a') (f [] TType b b') f_ [] TType (UFunN FVecScalar [a, b]) t@NonNeut = t2 (f [] TNat a (ENat 1)) (f [] TType b t) f_ [] TType (TVec a' b') (UFunN FVecScalar [a, b]) = t2 (f [] TNat a' a) (f [] TType b' b) f_ [] TType t@NonNeut (UFunN FVecScalar [a, b]) = t2 (f [] TNat a (ENat 1)) (f [] TType b t) f_ [] typ a@Neut{} a' = CstrT typ a a' f_ [] typ a a'@Neut{} = CstrT typ a a' f_ ns typ a a' = Empty $ unlines [ "can not unify", ppShow a, "with", ppShow a' ] ff _ _ [] = Unit ff ns tt@(Pi v t _) ((t1, t2'): ts) = t2 (f ns t t1 t2') $ ff ns (appTy tt t1) ts ff ns t zs = error $ "ff: " -- ++ show (a, n, length xs', length $ mkConPars n typ) ++ "\n" ++ ppShow (nType a) ++ "\n" ++ ppShow (foldl appTy (nType a) $ mkConPars n typ) ++ "\n" ++ ppShow (zip xs xs') ++ "\n" ++ ppShow zs ++ "\n" ++ ppShow t pattern NonNeut <- (nonNeut -> True) nonNeut FL{} = True nonNeut Neut{} = False nonNeut _ = True t2C (unfixlabel -> TT) (unfixlabel -> TT) = TT t2C a b = TFun Ft2C (Unit :~> Unit :~> Unit) [a, b] t2 (unfixlabel -> Unit) a = a t2 a (unfixlabel -> Unit) = a t2 (unfixlabel -> Empty a) (unfixlabel -> Empty b) = Empty (a <> b) t2 (unfixlabel -> Empty s) _ = Empty s t2 _ (unfixlabel -> Empty s) = Empty s t2 a b = T2 a b oneOp :: (forall a . Num a => a -> a) -> Exp -> Maybe Exp oneOp f = oneOp_ f f oneOp_ f _ (EFloat x) = Just $ EFloat $ f x oneOp_ _ f (EInt x) = Just $ EInt $ f x oneOp_ _ _ _ = Nothing twoOp :: (forall a . Num a => a -> a -> a) -> Exp -> Exp -> Maybe Exp twoOp f = twoOp_ f f twoOp_ f _ (EFloat x) (EFloat y) = Just $ EFloat $ f x y twoOp_ _ f (EInt x) (EInt y) = Just $ EInt $ f x y twoOp_ _ _ _ _ = Nothing modF x y = x - fromIntegral (floor (x / y)) * y twoOpBool :: (forall a . Ord a => a -> a -> Bool) -> Exp -> Exp -> Exp -> Maybe Exp twoOpBool f t (EFloat x) (EFloat y) = Just $ EBool $ f x y twoOpBool f t (EInt x) (EInt y) = Just $ EBool $ f x y twoOpBool f t (EString x) (EString y) = Just $ EBool $ f x y twoOpBool f t (EChar x) (EChar y) = Just $ EBool $ f x y twoOpBool f TNat (ENat x) (ENat y) = Just $ EBool $ f x y twoOpBool _ _ _ _ = Nothing app_ :: Exp -> Exp -> Exp app_ (Lam x) a = subst 0 a x app_ (Con s n xs) a = if n < conParams s then Con s (n+1) xs else Con s n (xs ++ [a]) app_ (TyCon s xs) a = TyCon s (xs ++ [a]) app_ (Neut f) a = neutApp f a where neutApp (FL' x) a = app_ x a -- ??? neutApp (Fun' f vs i xs e) a | i > 0 = pmLabel f vs (i-1) (a: xs) (subst (i-1) (up (i-1) a) $ Neut e) neutApp f a = Neut $ App_ f a -------------------------------------------------------------------------------- constraints env data CEnv a = MEnd a | Meta Exp (CEnv a) | Assign !Int ExpType (CEnv a) -- De Bruijn index decreasing assign reservedOp, only for metavariables (non-recursive) deriving (Show, Functor) instance (Subst Exp a, Up a) => Up (CEnv a) where up_ n i = iterateN n $ up1_ i up1_ i = \case MEnd a -> MEnd $ up1_ i a Meta a b -> Meta (up1_ i a) (up1_ (i+1) b) Assign j a b -> handleLet i j $ \i' j' -> assign j' (up1_ i' a) (up1_ i' b) where handleLet i j f | i > j = f (i-1) j | i <= j = f i (j+1) used i a = error "used @(CEnv _)" fold _ _ _ = error "fold @(CEnv _)" maxDB_ _ = error "maxDB_ @(CEnv _)" instance (Subst Exp a, Up a) => Subst Exp (CEnv a) where subst_ i dx x = \case MEnd a -> MEnd $ subst_ i dx x a Meta a b -> Meta (subst_ i dx x a) (subst_ (i+1) (upDB 1 dx) (up 1 x) b) Assign j a b | j > i, Just a' <- down i a -> assign (j-1) a' (subst i (subst (j-1) (fst a') x) b) | j > i, Just x' <- down (j-1) x -> assign (j-1) (subst i x' a) (subst i x' b) | j < i, Just a' <- down (i-1) a -> assign j a' (subst (i-1) (subst j (fst a') x) b) | j < i, Just x' <- down j x -> assign j (subst (i-1) x' a) (subst (i-1) x' b) | j == i -> Meta (cstr (snd a) x $ fst a) $ up1_ 0 b --assign :: (Int -> Exp -> CEnv Exp -> a) -> (Int -> Exp -> CEnv Exp -> a) -> Int -> Exp -> CEnv Exp -> a swapAssign _ clet i (Var j, t) b | i > j = clet j (Var (i-1), t) $ subst j (Var (i-1)) $ up1_ i b swapAssign clet _ i a b = clet i a b assign = swapAssign Assign Assign -------------------------------------------------------------------------------- environments -- SExp + Exp zipper data Env = EBind1 SI Binder Env SExp2 -- zoom into first parameter of SBind | EBind2_ SI Binder Type Env -- zoom into second parameter of SBind | EApp1 SI Visibility Env SExp2 | EApp2 SI Visibility ExpType Env | ELet1 SIName Env SExp2 | ELet2 SIName ExpType Env | EGlobal | ELabelEnd Env | EAssign Int ExpType Env | CheckType_ SI Type Env | CheckIType SExp2 Env -- | CheckSame Exp Env | CheckAppType SI Visibility Type Env SExp2 --pattern CheckAppType _ h t te b = EApp1 _ h (CheckType t te) b deriving Show pattern EBind2 b e env <- EBind2_ _ b e env where EBind2 b e env = EBind2_ (debugSI "6") b e env pattern CheckType e env <- CheckType_ _ e env where CheckType e env = CheckType_ (debugSI "7") e env parent = \case EAssign _ _ x -> Right x EBind2 _ _ x -> Right x EBind1 _ _ x _ -> Right x EApp1 _ _ x _ -> Right x EApp2 _ _ _ x -> Right x ELet1 _ x _ -> Right x ELet2 _ _ x -> Right x CheckType _ x -> Right x CheckIType _ x -> Right x -- CheckSame _ x -> Right x CheckAppType _ _ _ x _ -> Right x ELabelEnd x -> Right x EGlobal -> Left () -------------------------------------------------------------------------------- simple typing litType = \case LInt _ -> TInt LFloat _ -> TFloat LString _ -> TString LChar _ -> TChar class NType a where nType :: a -> Type instance NType FunName where nType (FunName _ _ t) = t instance NType TyConName where nType (TyConName _ _ t _ _) = t instance NType CaseFunName where nType (CaseFunName _ t _) = t instance NType TyCaseFunName where nType (TyCaseFunName _ t) = t conType (snd . getParams . unfixlabel -> TyCon (TyConName _ _ _ cs _) _) (ConName _ n t) = t --snd $ cs !! n neutType te = \case App_ f x -> appTy (neutType te f) x Var_ i -> snd $ varType "C" i te CaseFun_ s ts n -> appTy (foldl appTy (nType s) $ makeCaseFunPars te n ++ ts) (Neut n) TyCaseFun_ s [m, t, f] n -> foldl appTy (nType s) [m, t, Neut n, f] Fun' s _ _ a _ -> foldlrev appTy (nType s) a neutType' te = \case App_ f x -> appTy (neutType' te f) x Var_ i -> varType' i te CaseFun_ s ts n -> appTy (foldl appTy (nType s) $ makeCaseFunPars' te n ++ ts) (Neut n) TyCaseFun_ s [m, t, f] n -> foldl appTy (nType s) [m, t, Neut n, f] Fun' s _ _ a _ -> foldlrev appTy (nType s) a mkExpTypes t [] = [] mkExpTypes t@(Pi _ a _) (x: xs) = (x, t): mkExpTypes (appTy t x) xs appTy (Pi _ a b) x = subst 0 x b appTy t x = error $ "appTy: " ++ show t -------------------------------------------------------------------------------- error messages data ErrorMsg = ErrorMsg String | ECantFind SName SI | ETypeError String SI | ERedefined SName SI SI instance NFData ErrorMsg where rnf = \case ErrorMsg m -> rnf m ECantFind a b -> rnf (a, b) ETypeError a b -> rnf (a, b) ERedefined a b c -> rnf (a, b, c) errorRange_ = \case ErrorMsg s -> [] ECantFind s si -> [si] ETypeError msg si -> [si] ERedefined s si si' -> [si, si'] showError :: Map.Map FilePath String -> ErrorMsg -> String showError srcs = \case ErrorMsg s -> s ECantFind s si -> "can't find: " ++ s ++ " in " ++ showSI srcs si ETypeError msg si -> "type error: " ++ msg ++ "\nin " ++ showSI srcs si ++ "\n" ERedefined s si si' -> "already defined " ++ s ++ " at " ++ showSI srcs si ++ "\n and at " ++ showSI srcs si' instance Show ErrorMsg where show = showError mempty -------------------------------------------------------------------------------- inference -- inference monad type IM m = ExceptT ErrorMsg (ReaderT (Extensions, GlobalEnv) (WriterT Infos m)) expAndType s (e, t, si) = (e, t) -- todo: do only if NoTypeNamespace extension is not on lookupName s@('\'':s') m = expAndType s <$> (Map.lookup s m `mplus` Map.lookup s' m) lookupName s m = expAndType s <$> Map.lookup s m getDef te si s = do nv <- asks snd maybe (throwError' $ ECantFind s si) return (lookupName s nv) type ExpType' = CEnv ExpType inferN :: forall m . Monad m => Env -> SExp2 -> IM m ExpType' inferN e s = do b <- asks $ (TraceTypeCheck `elem`) . fst mapExceptT (mapReaderT $ mapWriterT $ fmap filt) $ inferN_ (if b then \s x m -> tell [ITrace s x] >> m else \_ _ m -> m) e s where filt (e@Right{}, is) = (e, filter f is) filt x = x f ITrace{} = False f _ = True substTo i x = subst i x . up1_ (i+1) inferN_ :: forall m . Monad m => (forall a . String -> String -> IM m a -> IM m a) -> Env -> SExp2 -> IM m ExpType' inferN_ tellTrace = infer where infer :: Env -> SExp2 -> IM m ExpType' infer te exp = tellTrace "infer" (showEnvSExp te exp) $ (if debug then fmap (fmap{-todo-} $ recheck' "infer" te) else id) $ case exp of Parens x -> infer te x SAnn x t -> checkN (CheckIType x te) t TType SLabelEnd x -> infer (ELabelEnd te) x SVar (si, _) i -> focus_' te exp (Var i, snd $ varType "C2" i te) SLit si l -> focus_' te exp (ELit l, litType l) STyped si et -> focus_' te exp et SGlobal (si, s) -> focus_' te exp =<< getDef te si s SApp si h a b -> infer (EApp1 (si `validate` [sourceInfo a, sourceInfo b]) h te b) a SLet le a b -> infer (ELet1 le te b{-in-}) a{-let-} -- infer te SLamV b `SAppV` a) SBind si h _ a b -> infer ((if h /= BMeta then CheckType_ (sourceInfo exp) TType else id) $ EBind1 si h te $ (if isPi h then TyType else id) b) a checkN :: Env -> SExp2 -> Type -> IM m ExpType' checkN te x t = tellTrace "check" (showEnvSExpType te x t) $ checkN_ te x t checkN_ te (Parens e) t = checkN_ te e t checkN_ te e t | x@(SGlobal (si, MatchName n)) `SAppV` SLamV (Wildcard _) `SAppV` a `SAppV` SVar siv v `SAppV` b <- e = infer te $ x `SAppV` SLam Visible SType (STyped mempty (subst (v+1) (Var 0) $ up 1 t, TType)) `SAppV` a `SAppV` SVar siv v `SAppV` b -- temporal hack | x@(SGlobal (si, CaseName "'Nat")) `SAppV` SLamV (Wildcard _) `SAppV` a `SAppV` b `SAppV` SVar siv v <- e = infer te $ x `SAppV` SLamV (STyped mempty (substTo (v+1) (Var 0) $ up 1 t, TType)) `SAppV` a `SAppV` b `SAppV` SVar siv v -- temporal hack | x@(SGlobal (si, CaseName "'VecS")) `SAppV` SLamV (SLamV (Wildcard _)) `SAppV` a `SAppV` b `SAppV` c `SAppV` SVar siv v <- e , TyConN FVecS [_, Var n'] <- snd $ varType "xx" v te = infer te $ x `SAppV` SLamV (SLamV (STyped mempty (substTo (n'+2) (Var 1) $ up 2 t, TType))) `SAppV` a `SAppV` b `SAppV` c `SAppV` SVar siv v {- -- temporal hack | x@(SGlobal (si, "'HListCase")) `SAppV` SLamV (SLamV (Wildcard _)) `SAppV` a `SAppV` b `SAppV` SVar siv v <- e , TVec (Var n') _ <- snd $ varType "xx" v te = infer te $ x `SAppV` SLamV (SLamV (STyped mempty (subst (n'+2) (Var 1) $ up1_ (n'+3) $ up 2 t, TType))) `SAppV` a `SAppV` b `SAppV` SVar siv v -} | SLabelEnd x <- e = checkN (ELabelEnd te) x t | SApp si h a b <- e = infer (CheckAppType si h t te b) a | SLam h a b <- e, Pi h' x y <- t, h == h' = do tellType e t let same = checkSame te a x if same then checkN (EBind2 (BLam h) x te) b y else error $ "checkSame:\n" ++ show a ++ "\nwith\n" ++ showEnvExp te (x, TType) | Pi Hidden a b <- t = do bb <- notHiddenLam e if bb then checkN (EBind2 (BLam Hidden) a te) (up1 e) b else infer (CheckType_ (sourceInfo e) t te) e | otherwise = infer (CheckType_ (sourceInfo e) t te) e where -- todo notHiddenLam = \case SLam Visible _ _ -> return True SGlobal (si,s) -> do nv <- asks snd case fromMaybe (error $ "infer: can't find: " ++ s) $ lookupName s nv of (Lam _, Pi Hidden _ _) -> return False _ -> return True _ -> return False {- -- todo checkSame te (Wildcard _) a = return (te, True) checkSame te x y = do (ex, _) <- checkN te x TType return $ ex == y -} checkSame te (Wildcard _) a = True checkSame te (SGlobal (_,"'Type")) TType = True checkSame te SType TType = True checkSame te (SBind _ BMeta _ SType (STyped _ (Var 0, _))) a = True checkSame te a b = error $ "checkSame: " ++ show (a, b) hArgs (Pi Hidden _ b) = 1 + hArgs b hArgs _ = 0 focus_' env si eet = tellType si (snd eet) >> focus_ env eet focus_ :: Env -> ExpType -> IM m ExpType' focus_ env eet@(e, et) = tellTrace "focus" (showEnvExp env eet) $ (if debug then fmap (fmap{-todo-} $ recheck' "focus" env) else id) $ case env of ELabelEnd te -> focus_ te (LabelEnd e, et) -- CheckSame x te -> focus_ (EBind2_ (debugSI "focus_ CheckSame") BMeta (cstr x e) te) $ up 1 eet CheckAppType si h t te b -- App1 h (CheckType t te) b | Pi h' x (down 0 -> Just y) <- et, h == h' -> case t of Pi Hidden t1 t2 | h == Visible -> focus_ (EApp1 si h (CheckType_ (sourceInfo b) t te) b) eet -- <> b : {t1} -> {t2} _ -> focus_ (EBind2_ (sourceInfo b) BMeta (cstr TType t y) $ EApp1 si h te b) $ up 1 eet | otherwise -> focus_ (EApp1 si h (CheckType_ (sourceInfo b) t te) b) eet EApp1 si h te b | Pi h' x y <- et, h == h' -> checkN (EApp2 si h eet te) b x | Pi Hidden x y <- et, h == Visible -> focus_ (EApp1 mempty Hidden env $ Wildcard $ Wildcard SType) eet -- e b --> e _ b -- | CheckType (Pi Hidden _ _) te' <- te -> error "ok" -- | CheckAppType Hidden _ te' _ <- te -> error "ok" | otherwise -> infer (CheckType_ (sourceInfo b) (Var 2) $ cstr' h (up 2 et) (Pi Visible (Var 1) (Var 1)) (up 2 e) $ EBind2_ (sourceInfo b) BMeta TType $ EBind2_ (sourceInfo b) BMeta TType te) (up 3 b) where cstr' h x y e = EApp2 mempty h (evalCoe (up 1 x) (up 1 y) (Var 0) (up 1 e), up 1 y) . EBind2_ (sourceInfo b) BMeta (cstr TType x y) ELet2 ln (x{-let-}, xt) te -> focus_ te $ subst 0 (mkELet ln x xt){-let-} eet{-in-} CheckIType x te -> checkN te x e CheckType_ si t te | hArgs et > hArgs t -> focus_ (EApp1 mempty Hidden (CheckType_ si t te) $ Wildcard $ Wildcard SType) eet | hArgs et < hArgs t, Pi Hidden t1 t2 <- t -> focus_ (CheckType_ si t2 $ EBind2 (BLam Hidden) t1 te) eet | otherwise -> focus_ (EBind2_ si BMeta (cstr TType t et) te) $ up 1 eet EApp2 si h (a, at) te -> focus_' te si (app_ a e, appTy at e) -- h?? EBind1 si h te b -> infer (EBind2_ (sourceInfo b) h e te) b EBind2_ si (BLam h) a te -> focus_ te $ lamPi h a eet EBind2_ si (BPi h) a te -> focus_' te si (Pi h a e, TType) _ -> focus2 env $ MEnd eet focus2 :: Env -> CEnv ExpType -> IM m ExpType' focus2 env eet = case env of -- ELabelEnd te -> ELet1 le te b{-in-} -> infer (ELet2 le (replaceMetas' eet{-let-}) te) b{-in-} EBind2_ si BMeta tt_ te | ELabelEnd te' <- te -> refocus (ELabelEnd $ EBind2_ si BMeta tt_ te') eet | Unit <- tt -> refocus te $ subst 0 TT eet | Empty msg <- tt -> throwError' $ ETypeError msg si | T2 x y <- tt, let te' = EBind2_ si BMeta (up 1 y) $ EBind2_ si BMeta x te -> refocus te' $ subst 2 (t2C (Var 1) (Var 0)) $ up 2 eet | CstrT t a b <- tt, Just r <- cst (a, t) b -> r | CstrT t a b <- tt, Just r <- cst (b, t) a -> r | isCstr tt, EBind2 h x te' <- te{-, h /= BMeta todo: remove-}, Just x' <- down 0 tt, x == x' -> refocus te $ subst 1 (Var 0) eet | EBind2 h x te' <- te, h /= BMeta, Just b' <- down 0 tt -> refocus (EBind2_ si h (up 1 x) $ EBind2_ si BMeta b' te') $ subst 2 (Var 0) $ up 1 eet | ELet2 le (x, xt) te' <- te, Just b' <- down 0 tt -> refocus (ELet2 le (up 1 x, up 1 xt) $ EBind2_ si BMeta b' te') $ subst 2 (Var 0) $ up 1 eet | EBind1 si h te' x <- te -> refocus (EBind1 si h (EBind2_ si BMeta tt_ te') $ up1_ 1 x) eet | ELet1 le te' x <- te, floatLetMeta $ snd $ replaceMetas' $ Meta tt_ $ eet -> refocus (ELet1 le (EBind2_ si BMeta tt_ te') $ up1_ 1 x) eet | CheckAppType si h t te' x <- te -> refocus (CheckAppType si h (up 1 t) (EBind2_ si BMeta tt_ te') $ up1 x) eet | EApp1 si h te' x <- te -> refocus (EApp1 si h (EBind2_ si BMeta tt_ te') $ up1 x) eet | EApp2 si h x te' <- te -> refocus (EApp2 si h (up 1 x) $ EBind2_ si BMeta tt_ te') eet | CheckType_ si t te' <- te -> refocus (CheckType_ si (up 1 t) $ EBind2_ si BMeta tt_ te') eet -- | CheckIType x te' <- te -> refocus (CheckType_ si (up 1 t) $ EBind2_ si BMeta tt te') eet | otherwise -> focus2 te $ Meta tt_ eet where tt = unfixlabel tt_ refocus = refocus_ focus2 cst :: ExpType -> Exp -> Maybe (IM m ExpType') cst x = \case Var i | fst (varType "X" i te) == BMeta , Just y <- down i x -> Just $ join swapAssign (\i x -> refocus $ EAssign i x te) i y $ subst 0 {-ReflCstr y-}TT $ subst (i+1) (fst $ up 1 y) eet _ -> Nothing EAssign i b te -> case te of ELabelEnd te' -> refocus' (ELabelEnd $ EAssign i b te') eet EBind2_ si h x te' | i > 0, Just b' <- down 0 b -> refocus' (EBind2_ si h (subst (i-1) (fst b') x) (EAssign (i-1) b' te')) eet ELet2 le (x, xt) te' | i > 0, Just b' <- down 0 b -> refocus' (ELet2 le (subst (i-1) (fst b') x, subst (i-1) (fst b') xt) (EAssign (i-1) b' te')) eet ELet1 le te' x -> refocus' (ELet1 le (EAssign i b te') $ substS (i+1) (up 1 b) x) eet EBind1 si h te' x -> refocus' (EBind1 si h (EAssign i b te') $ substS (i+1) (up 1 b) x) eet CheckAppType si h t te' x -> refocus' (CheckAppType si h (subst i (fst b) t) (EAssign i b te') $ substS i b x) eet EApp1 si h te' x -> refocus' (EApp1 si h (EAssign i b te') $ substS i b x) eet EApp2 si h x te' -> refocus' (EApp2 si h (subst i (fst b) x) $ EAssign i b te') eet CheckType_ si t te' -> refocus' (CheckType_ si (subst i (fst b) t) $ EAssign i b te') eet EAssign j a te' | i < j -> refocus' (EAssign (j-1) (subst i (fst b) a) $ EAssign i (up1_ (j-1) b) te') eet t | Just te' <- pull1 i b te -> refocus' te' eet | otherwise -> swapAssign (\i x -> focus2 te . Assign i x) (\i x -> refocus' $ EAssign i x te) i b eet -- todo: CheckSame Exp Env where refocus' = fix refocus_ pull1 i b = \case EBind2_ si h x te | i > 0, Just b' <- down 0 b -> EBind2_ si h (subst (i-1) (fst b') x) <$> pull1 (i-1) b' te EAssign j a te | i < j -> EAssign (j-1) (subst i (fst b) a) <$> pull1 i (up1_ (j-1) b) te | j <= i -> EAssign j (subst i (fst b) a) <$> pull1 (i+1) (up1_ j b) te te -> pull i te pull i = \case EBind2 BMeta _ te | i == 0 -> Just te EBind2_ si h x te | i > 0 -> EBind2_ si h <$> down (i-1) x <*> pull (i-1) te EAssign j a te -> EAssign (if j <= i then j else j-1) <$> down i a <*> pull (if j <= i then i+1 else i) te _ -> Nothing EGlobal{} -> return eet _ -> case eet of MEnd x -> throwError' $ ErrorMsg $ "focus todo: " ++ ppShow x _ -> throwError' $ ErrorMsg $ "focus checkMetas: " ++ ppShow env ++ "\n" ++ ppShow (fst <$> eet) where refocus_ :: (Env -> CEnv ExpType -> IM m ExpType') -> Env -> CEnv ExpType -> IM m ExpType' refocus_ _ e (MEnd at) = focus_ e at refocus_ f e (Meta x at) = f (EBind2 BMeta x e) at refocus_ _ e (Assign i x at) = focus2 (EAssign i x e) at replaceMetas' = replaceMetas $ lamPi Hidden lamPi h = (***) <$> const Lam <*> Pi h replaceMetas bind = \case Meta a t -> bind a $ replaceMetas bind t Assign i x t | x' <- up1_ i x -> bind (cstr (snd x') (Var i) $ fst x') . up 1 . up1_ i $ replaceMetas bind t MEnd t -> t isCstr CstrT{} = True isCstr (UFunN s [_]) = s `elem` [FEq, FOrd, FNum, FSigned, FComponent, FIntegral, FFloating] -- todo: use Constraint type to decide this isCstr _ = {- trace_ (ppShow c ++ show c) $ -} False -------------------------------------------------------------------------------- re-checking type Message = String recheck :: Message -> Env -> ExpType -> ExpType recheck msg e = recheck' msg e -- todo: check type also recheck' :: Message -> Env -> ExpType -> ExpType recheck' msg' e (x, xt) = (recheck_ "main" (checkEnv e) (x, xt), xt) where checkEnv = \case e@EGlobal{} -> e EBind1 si h e b -> EBind1 si h (checkEnv e) b EBind2_ si h t e -> EBind2_ si h (checkType e t) $ checkEnv e -- E [\(x :: t) -> e] -> check E [t] ELet1 le e b -> ELet1 le (checkEnv e) b ELet2 le x e -> ELet2 le (recheck'' "env" e x) $ checkEnv e EApp1 si h e b -> EApp1 si h (checkEnv e) b EApp2 si h a e -> EApp2 si h (recheck'' "env" e a) $ checkEnv e -- E [a x] -> check EAssign i x e -> EAssign i (recheck'' "env" e $ up1_ i x) $ checkEnv e -- __ CheckType_ si x e -> CheckType_ si (checkType e x) $ checkEnv e -- CheckSame x e -> CheckSame (recheck'' "env" e x) $ checkEnv e CheckAppType si h x e y -> CheckAppType si h (checkType e x) (checkEnv e) y recheck'' msg te a@(x, xt) = (recheck_ msg te a, xt) checkType te e = recheck_ "check" te (e, TType) recheck_ msg te = \case (Var k, zt) -> Var k -- todo: check var type (Lam_ md b, Pi h a bt) -> Lam_ md $ recheck_ "9" (EBind2 (BLam h) a te) (b, bt) (Pi_ md h a b, TType) -> Pi_ md h (checkType te a) $ checkType (EBind2 (BPi h) a te) b (ELit l, zt) -> ELit l -- todo: check literal type (TType, TType) -> TType (Neut (App__ md a b), zt) | (Neut a', at) <- recheck'' "app1" te (Neut a, neutType te a) -> checkApps "a" [] zt (Neut . App__ md a' . head) te at [b] (Con_ md s n as, zt) -> checkApps (show s) [] zt (Con_ md s n . drop (conParams s)) te (conType zt s) $ mkConPars n zt ++ as (TyCon_ md s as, zt) -> checkApps (show s) [] zt (TyCon_ md s) te (nType s) as (CaseFun s@(CaseFunName _ t pars) as n, zt) -> checkApps (show s) [] zt (\xs -> evalCaseFun s (init $ drop pars xs) (last xs)) te (nType s) (makeCaseFunPars te n ++ as ++ [Neut n]) (TyCaseFun s [m, t, f] n, zt) -> checkApps (show s) [] zt (\[m, t, n, f] -> evalTyCaseFun s [m, t, f] n) te (nType s) [m, t, Neut n, f] (Neut (Fun_ md f vs@[] i a x), zt) -> checkApps "lab" [] zt (\xs -> Neut $ Fun_ md f vs i (reverse xs) x) te (nType f) $ reverse a -- TODO: recheck x -- TODO (r@(Neut (Fun' f vs i a x)), zt) -> r (LabelEnd x, zt) -> LabelEnd $ recheck_ msg te (x, zt) (Neut d@Delta{}, zt) -> Neut d where checkApps s acc zt f _ t [] | t == zt = f $ reverse acc | otherwise = error_ $ "checkApps' " ++ s ++ " " ++ msg ++ "\n" ++ showEnvExp te{-todo-} (t, TType) ++ "\n\n" ++ showEnvExp te (zt, TType) checkApps s acc zt f te t@(unfixlabel -> Pi h x y) (b_: xs) = checkApps (s++"+") (b: acc) zt f te (appTy t b) xs where b = recheck_ "checkApps" te (b_, x) checkApps s acc zt f te t _ = error_ $ "checkApps " ++ s ++ " " ++ msg ++ "\n" ++ showEnvExp te{-todo-} (t, TType) ++ "\n\n" ++ showEnvExp e (x, xt) -- Ambiguous: (Int ~ F a) => Int -- Not ambiguous: (Show a, a ~ F b) => b ambiguityCheck :: String -> Exp -> Maybe String ambiguityCheck s ty = case ambigVars ty of [] -> Nothing err -> Just $ s ++ " has ambiguous type:\n" ++ ppShow ty ++ "\nproblematic vars:\n" ++ show err ambigVars :: Exp -> [(Int, Exp)] ambigVars ty = [(n, c) | (n, c) <- hid, not $ any (`Set.member` defined) $ Set.insert n $ free c] where (defined, hid, i) = compDefined False ty floatLetMeta :: Exp -> Bool floatLetMeta ty = (i-1) `Set.member` defined where (defined, hid, i) = compDefined True ty compDefined b ty = (defined, hid, i) where defined = dependentVars hid $ Set.map (if b then (+i) else id) $ free ty i = length hid_ hid = zipWith (\k t -> (k, up (k+1) t)) (reverse [0..i-1]) hid_ (hid_, ty') = hiddenVars ty hiddenVars (Pi Hidden a b) = first (a:) $ hiddenVars b hiddenVars t = ([], t) -- compute dependent type vars in constraints -- Example: dependentVars [(a, b) ~ F b c, d ~ F e] [c] == [a,b,c] dependentVars :: [(Int, Exp)] -> Set.Set Int -> Set.Set Int dependentVars ie = cycle mempty where freeVars = free cycle acc s | Set.null s = acc | otherwise = cycle (acc <> s) (grow s Set.\\ acc) grow = flip foldMap ie $ \case (n, t) -> (Set.singleton n <-> freeVars t) <> case t of CstrT _{-todo-} ty f -> freeVars ty <-> freeVars f CSplit a b c -> freeVars a <-> (freeVars b <> freeVars c) _ -> mempty where a --> b = \s -> if Set.null $ a `Set.intersection` s then mempty else b a <-> b = (a --> b) <> (b --> a) -------------------------------------------------------------------------------- global env type GlobalEnv = Map.Map SName (Exp, Type, SI) initEnv :: GlobalEnv initEnv = Map.fromList [ (,) "'Type" (TType, TType, debugSI "source-of-Type") ] -------------------------------------------------------------------------------- infos data Info = Info Range String | IType String String | ITrace String String | IError ErrorMsg instance NFData Info where rnf = \case Info r s -> rnf (r, s) IType a b -> rnf (a, b) ITrace i s -> rnf (i, s) IError x -> rnf x instance Show Info where show = \case Info r s -> ppShow r ++ " " ++ s IType a b -> a ++ " :: " ++ correctEscs b ITrace i s -> i ++ ": " ++ correctEscs s IError e -> "!" ++ show e errorRange is = [r | IError e <- is, RangeSI r <- errorRange_ e ] type Infos = [Info] throwError' e = tell [IError e] >> throwError e mkInfoItem (RangeSI r) i = [Info r i] mkInfoItem _ _ = mempty listAllInfos m = h "trace" (listTraceInfos m) ++ h "tooltips" [ ppShow r ++ " " ++ intercalate " | " is | (r, is) <- listTypeInfos m ] where h x [] = [] h x xs = ("------------ " ++ x) : xs listTraceInfos m = [show i | i <- m, case i of Info{} -> False; _ -> True] listTypeInfos m = map (second Set.toList) $ Map.toList $ Map.unionsWith (<>) [Map.singleton r $ Set.singleton i | Info r i <- m] -------------------------------------------------------------------------------- inference for statements inference :: MonadFix m => [Stmt] -> IM m [GlobalEnv] inference [] = return [] inference (x:xs) = do y <- handleStmt x (y:) <$> withEnv y (inference xs) modn = 0 handleStmt :: MonadFix m => Stmt -> IM m GlobalEnv handleStmt = \case Primitive n (trSExp' -> t_) -> do t <- inferType =<< ($ t_) <$> addF tellType (fst n) t addToEnv n $ flip (,) t $ lamify t $ Neut . DFun_ (FunName (cFName modn 0 n) Nothing t) Let n mt t_ -> do af <- addF let t__ = maybe id (flip SAnn . af) mt t_ (x, t) <- inferTerm (snd n) $ trSExp' $ if usedS n t__ then SBuiltin "primFix" `SAppV` SLamV (substSG0 n t__) else t__ tellType (fst n) t addToEnv n (mkELet n x t, t) {- -- hack when (snd (getParams t) == TType) $ do let ps' = fst $ getParams t t'' = (TType :~> TType) :~> addParams ps' (Var (length ps') `app_` DFun (FunName (snd n) t) (downTo 0 $ length ps')) :~> TType :~> Var 2 `app_` Var 0 :~> Var 3 `app_` Var 1 addToEnv (fst n, MatchName (snd n)) (lamify t'' $ \[m, tr, n', f] -> evalTyCaseFun (TyCaseFunName (snd n) t) [m, tr, f] n', t'') -} PrecDef{} -> return mempty Data s (map (second trSExp') -> ps) (trSExp' -> t_) addfa (map (second trSExp') -> cs) -> do af <- if addfa then asks $ \(exs, ge) -> addForalls exs . (snd s:) . defined' $ ge else return id vty <- inferType $ addParamsS ps t_ tellType (fst s) vty let sint = cFName modn 2 s pnum' = length $ filter ((== Visible) . fst) ps inum = arity vty - length ps mkConstr j (cn, af -> ct) | c == SGlobal s && take pnum' xs == downToS "a3" (length . fst . getParamsS $ ct) pnum' = do cty <- removeHiddenUnit <$> inferType (addParamsS [(Hidden, x) | (Visible, x) <- ps] ct) tellType (fst cn) cty let pars = zipWith (\x -> second $ STyped (debugSI "mkConstr1") . flip (,) TType . up_ (1+j) x) [0..] $ drop (length ps) $ fst $ getParams cty act = length . fst . getParams $ cty acts = map fst . fst . getParams $ cty conn = ConName (cFName modn 1 cn) j cty e <- addToEnv cn (Con conn 0 [], cty) return (e, ((conn, cty) , addParamsS pars $ foldl SAppV (SVar (debugSI "22", ".cs") $ j + length pars) $ drop pnum' xs ++ [apps' (SGlobal cn) (zip acts $ downToS ("a4 " ++ snd cn ++ " " ++ show (length ps)) (j+1+length pars) (length ps) ++ downToS "a5" 0 (act- length ps))] )) | otherwise = throwError' $ ErrorMsg "illegal data definition (parameters are not uniform)" -- ++ show (c, cn, take pnum' xs, act) where (c, map snd -> xs) = getApps $ snd $ getParamsS ct motive = addParamsS (replicate inum (Visible, Wildcard SType)) $ SPi Visible (apps' (SGlobal s) $ zip (map fst ps) (downToS "a6" inum $ length ps) ++ zip (map fst $ fst $ getParamsS t_) (downToS "a7" 0 inum)) SType (e1, es, tcn, cfn@(CaseFunName _ ct _), _, _) <- mfix $ \ ~(_, _, _, _, ct', cons') -> do let cfn = CaseFunName sint ct' $ length ps let tcn = TyConName sint inum vty (map fst cons') cfn e1 <- addToEnv s (TyCon tcn [], vty) (unzip -> (mconcat -> es, cons)) <- withEnv e1 $ zipWithM mkConstr [0..] cs ct <- withEnv (e1 <> es) $ inferType ( (\x -> traceD ("type of case-elim before elaboration: " ++ ppShow x) x) $ addParamsS ( [(Hidden, x) | (_, x) <- ps] ++ (Visible, motive) : map ((,) Visible . snd) cons ++ replicate inum (Hidden, Wildcard SType) ++ [(Visible, apps' (SGlobal s) $ zip (map fst ps) (downToS "a8" (inum + length cs + 1) $ length ps) ++ zip (map fst $ fst $ getParamsS t_) (downToS "a9" 0 inum))] ) $ foldl SAppV (SVar (debugSI "23", ".ct") $ length cs + inum + 1) $ downToS "a10" 1 inum ++ [SVar (debugSI "24", ".24") 0] ) return (e1, es, tcn, cfn, ct, cons) e2 <- addToEnv (fst s, caseName (snd s)) (lamify ct $ \xs -> evalCaseFun cfn (init $ drop (length ps) xs) (last xs), ct) let ps' = fst $ getParams vty t = (TType :~> TType) :~> addParams ps' (Var (length ps') `app_` TyCon tcn (downTo 0 $ length ps')) :~> TType :~> Var 2 `app_` Var 0 :~> Var 3 `app_` Var 1 e3 <- addToEnv (fst s, MatchName (snd s)) (lamify t $ \[m, tr, n, f] -> evalTyCaseFun (TyCaseFunName sint t) [m, tr, f] n, t) return (e1 <> e2 <> e3 <> es) stmt -> error $ "handleStmt: " ++ show stmt withEnv e = local $ second (<> e) mkELet n x xt = {-(if null vs then id else trace_ $ "mkELet " ++ show (length vs) ++ " " ++ show n)-} term where vs = [Var i | i <- Set.toList $ free x <> free xt] fn = FunName (cFName modn 5 n) (Just x) xt term = pmLabel fn vs 0 [] $ getFix x 0 getFix (Lam z) i = Lam $ getFix z (i+1) getFix (TFun FprimFix _ [t, Lam f]) i = (if null vs then id else trace_ "!local rec") $ subst 0 (foldl app_ term (downTo 0 i)) f getFix x _ = x removeHiddenUnit (Pi Hidden Unit (down 0 -> Just t)) = removeHiddenUnit t removeHiddenUnit (Pi h a b) = Pi h a $ removeHiddenUnit b removeHiddenUnit t = t addParams ps t = foldr (uncurry Pi) t ps addLams ps t = foldr (const Lam) t ps lamify t x = addLams (fst $ getParams t) $ x $ downTo 0 $ arity t {- getApps' = second reverse . run where run (App a b) = second (b:) $ run a run x = (x, []) -} arity :: Exp -> Int arity = length . fst . getParams getParams :: Exp -> ([(Visibility, Exp)], Exp) getParams (Pi h a b) = first ((h, a):) $ getParams b getParams x = ([], x) getLams (Lam b) = getLams b getLams x = x inferTerm :: Monad m => String -> SExp2 -> IM m ExpType inferTerm msg t = fmap ((closedExp *** closedExp) . recheck msg EGlobal . replaceMetas (lamPi Hidden)) $ inferN EGlobal t inferType :: Monad m => SExp2 -> IM m Type inferType t = fmap (closedExp . fst . recheck "inferType" EGlobal . flip (,) TType . replaceMetas (Pi Hidden) . fmap fst) $ inferN (CheckType_ (debugSI "inferType CheckType_") TType EGlobal) t addToEnv :: Monad m => SIName -> ExpType -> IM m GlobalEnv addToEnv (si, s) (x, t) = do -- maybe (pure ()) throwError_ $ ambiguityCheck s t -- TODO -- b <- asks $ (TraceTypeCheck `elem`) . fst tell [IType s $ ppShow t] v <- asks $ Map.lookup s . snd case v of Nothing -> return $ Map.singleton s (closedExp x, closedExp t, si) Just (_, _, si') -> throwError' $ ERedefined s si si' {- joinEnv :: Monad m => GlobalEnv -> GlobalEnv -> IM m GlobalEnv joinEnv e1 e2 = do -} downTo n m = map Var [n+m-1, n+m-2..n] defined' = Map.keys -- todo: proper handling of implicit foralls addF = asks $ \(exs, ge) -> addForalls exs $ defined' ge tellType si t = tell $ mkInfoItem (sourceInfo si) $ removeEscs $ showDoc $ mkDoc True (t, TType) -------------------------------------------------------------------------------- pretty print -- todo: do this via conversion to SExp instance PShow Exp where pShowPrec _ = showDoc_ . mkDoc False instance PShow (CEnv Exp) where pShowPrec _ = showDoc_ . mkDoc False instance PShow Env where pShowPrec _ e = showDoc_ $ envDoc e $ pure $ shAtom $ underlined "<>" showEnvExp :: Env -> ExpType -> String showEnvExp e c = showDoc $ envDoc e $ epar <$> mkDoc False c showEnvSExp :: Up a => Env -> SExp' a -> String showEnvSExp e c = showDoc $ envDoc e $ epar <$> sExpDoc c showEnvSExpType :: Up a => Env -> SExp' a -> Exp -> String showEnvSExpType e c t = showDoc $ envDoc e $ epar <$> (shAnn "::" False <$> sExpDoc c <**> mkDoc False (t, TType)) where infixl 4 <**> (<**>) :: NameDB (a -> b) -> NameDB a -> NameDB b a <**> b = get >>= \s -> lift $ evalStateT a s <*> evalStateT b s {- expToSExp :: Exp -> SExp expToSExp = \case Fun x _ -> expToSExp x -- Var k -> shAtom <$> shVar k App a b -> SApp Visible{-todo-} (expToSExp a) (expToSExp b) {- Lam h a b -> join $ shLam (used 0 b) (BLam h) <$> f a <*> pure (f b) Bind h a b -> join $ shLam (used 0 b) h <$> f a <*> pure (f b) Cstr a b -> shCstr <$> f a <*> f b MT s xs -> foldl (shApp Visible) (shAtom s) <$> mapM f xs CaseFun s xs -> foldl (shApp Visible) (shAtom $ show s) <$> mapM f xs TyCaseFun s xs -> foldl (shApp Visible) (shAtom $ show s) <$> mapM f xs ConN s xs -> foldl (shApp Visible) (shAtom s) <$> mapM f xs TyConN s xs -> foldl (shApp Visible) (shAtom s) <$> mapM f xs -- TType -> pure $ shAtom "Type" ELit l -> pure $ shAtom $ show l Assign i x e -> shLet i (f x) (f e) LabelEnd x -> shApp Visible (shAtom "labend") <$> f x -} nameSExp :: SExp -> NameDB SExp nameSExp = \case SGlobal s -> pure $ SGlobal s SApp h a b -> SApp h <$> nameSExp a <*> nameSExp b SBind h a b -> newName >>= \n -> SBind h <$> nameSExp a <*> local (n:) (nameSExp b) SLet a b -> newName >>= \n -> SLet <$> nameSExp a <*> local (n:) (nameSExp b) STyped_ x (e, _) -> nameSExp $ expToSExp e -- todo: mark boundary SVar i -> SGlobal <$> shVar i -} envDoc :: Env -> Doc -> Doc envDoc x m = case x of EGlobal{} -> m EBind1 _ h ts b -> envDoc ts $ join $ shLam (used 0 b) h <$> m <*> pure (sExpDoc b) EBind2 h a ts -> envDoc ts $ join $ shLam True h <$> mkDoc ts' (a, TType) <*> pure m EApp1 _ h ts b -> envDoc ts $ shApp h <$> m <*> sExpDoc b EApp2 _ h (Lam (Var 0), Pi Visible TType _) ts -> envDoc ts $ shApp h (shAtom "tyType") <$> m EApp2 _ h a ts -> envDoc ts $ shApp h <$> mkDoc ts' a <*> m ELet1 _ ts b -> envDoc ts $ shLet_ m (sExpDoc b) ELet2 _ x ts -> envDoc ts $ shLet_ (mkDoc ts' x) m EAssign i x ts -> envDoc ts $ shLet i (mkDoc ts' x) m CheckType t ts -> envDoc ts $ shAnn ":" False <$> m <*> mkDoc ts' (t, TType) CheckIType t ts -> envDoc ts $ shAnn ":" False <$> m <*> pure (shAtom "??") -- mkDoc ts' t -- CheckSame t ts -> envDoc ts $ shCstr <$> m <*> mkDoc ts' t CheckAppType si h t te b -> envDoc (EApp1 si h (CheckType_ (sourceInfo b) t te) b) m ELabelEnd ts -> envDoc ts $ shApp Visible (shAtom "labEnd") <$> m x -> error $ "envDoc: " ++ show x where ts' = False class MkDoc a where mkDoc :: Bool -> a -> Doc instance MkDoc ExpType where mkDoc ts e = mkDoc ts $ fst e instance MkDoc Exp where mkDoc ts e = fmap inGreen <$> f e where f = \case -- Lam h a b -> join $ shLam (used 0 b) (BLam h) <$> f a <*> pure (f b) Lam b -> join $ shLam True (BLam Visible) <$> f TType{-todo!-} <*> pure (f b) Pi h a b -> join $ shLam (used 0 b) (BPi h) <$> f a <*> pure (f b) ENat' n -> pure $ shAtom $ show n (getTTup -> Just xs) -> shTuple <$> mapM f xs (getTup -> Just xs) -> shTuple <$> mapM f xs Con s _ xs -> foldl (shApp Visible) (shAtom_ $ show s) <$> mapM f xs TyConN s xs -> foldl (shApp Visible) (shAtom_ $ show s) <$> mapM f xs TType -> pure $ shAtom "Type" ELit l -> pure $ shAtom $ show l Neut x -> mkDoc ts x shAtom_ = shAtom . if ts then switchTick else id instance MkDoc Neutral where mkDoc ts e = fmap inGreen <$> f e where g = mkDoc ts f = \case CstrT' t a b -> shCstr <$> g (a, t) <*> g (b, t) Fun' s vs i (mkExpTypes (nType s) . reverse -> xs) _ -> foldl (shApp Visible) (shAtom_ $ show s) <$> mapM g xs Var_ k -> shAtom <$> shVar k App_ a b -> shApp Visible <$> g a <*> g b CaseFun_ s xs n -> foldl (shApp Visible) (shAtom_ $ show s) <$> mapM g ({-mkExpTypes (nType s) $ makeCaseFunPars te n ++ -} xs ++ [Neut n]) TyCaseFun_ s [m, t, f] n -> foldl (shApp Visible) (shAtom_ $ show s) <$> mapM g (mkExpTypes (nType s) [m, t, Neut n, f]) TyCaseFun_ s _ n -> error $ "mkDoc TyCaseFun" LabelEnd_ x -> shApp Visible (shAtom $ "labend") <$> g x Delta{} -> return $ shAtom "^delta" shAtom_ = shAtom . if ts then switchTick else id instance MkDoc (CEnv Exp) where mkDoc ts e = fmap inGreen <$> f e where f :: CEnv Exp -> Doc f = \case MEnd a -> mkDoc ts a Meta a b -> join $ shLam True BMeta <$> mkDoc ts a <*> pure (f b) Assign i (x, _) e -> shLet i (mkDoc ts x) (f e) getTup (unfixlabel -> ConN FHCons [_, _, x, xs]) = (x:) <$> getTup xs getTup (unfixlabel -> ConN FHNil []) = Just [] getTup _ = Nothing getTTup (unfixlabel -> TyConN FHList [xs]) = getList xs getTTup _ = Nothing getList (unfixlabel -> ConN FCons [x, xs]) = (x:) <$> getList xs getList (unfixlabel -> ConN FNil []) = Just [] getList _ = Nothing -------------------------------------------------------------------------------- tools mfix' f = ExceptT (mfix (runExceptT . f . either bomb id)) where bomb e = error $ "mfix (ExceptT): inner computation returned Left value:\n" ++ show e foldlrev f = foldr (flip f)