
Dickinson User Guide

Vanessa McHale

Contents

Introduction 2

Installing Dickinson 2

Distributions . 2

Source . 3

Editor Integration . 3

Tags . 3

Program Structure 4

Example . 4

Comments . 4

Definitions & Names . 5

Branching . 5

Interpolation . 5

Multi-Line Strings . 6

Expressions . 6

Lambdas . 7

Matches & Tuples . 7

Tags . 8

Types . 9

REPL 9

Saving & Restoring States . 10

Builtins . 10

1

Lints 11

Libraries 11

Using Libraries . 11

Example . 11

Third-Party Libraries . 12

Writing Libraries . 12

Scripting 12

Examples 13

Cowsay . 13

Noun Declension . 13

Divination Bot . 14

Star Wars Name Generator . 16

Shakespearean Insult Generator . 17

Lyrics Bot . 18

Magical Realism Bot . 18

Introduction

Dickinson is a text-generation language for generative literature. Each time you
run your code, you get back randomly generated text.

It provides a language to define random texts like the Magical Realism Bot or
fortune program.

Installing Dickinson

Distributions

Distributions for some platforms are available on the releases page.

Un-tar the package, then:

make install

2

https://twitter.com/MagicRealismBot
https://en.wikipedia.org/wiki/Fortune_%28Unix%29
https://github.com/vmchale/dickinson/releases

Source

First, install cabal and GHC. Then:

cabal install language-dickinson

This provides emd, the command-line interface to the Dickinson language.

You may also wish to install manpages for reference information about emd.
Manpages are installed at

emd man

Editor Integration

A vim plugin is available.

To install with vim-plug:

Plug 'vmchale/dickinson' , { 'rtp' : 'vim' }

To automatically enable spellchecking where appropriate put

autocmd BufNewFile,BufRead *.dck setlocal spell spelllang=en_us

in your ~/.vimrc.

Tags

To configure Dickinson with exuberant ctags or universal ctags, put the following
in a file named .ctags:

--langdef=DICKINSON
--langmap=DICKINSON:.dck
--regex-DICKINSON=/:def *([[:lower:]][[:alnum:]]+)/\1/f,function/
--regex-DICKINSON=/tydecl *([[:lower:]][[:alnum:]]+) *=/\1/t,type/

I have the following in my ~/.vimrc to keep tags updated:

augroup ctags
autocmd BufWritePost *.dck :silent !ctags -R .

augroup END

3

https://www.haskell.org/cabal/download.html
https://www.haskell.org/ghc/download.html
https://github.com/vmchale/dickinson/tree/master/vim
https://github.com/junegunn/vim-plug
http://ctags.sourceforge.net/
https://ctags.io/

Program Structure

Dickinson files begin with %-, followed by definitions.

Example

Here is a simple Dickinson program:

%-

(:def main
(:oneof
(| "heads")
(| "tails")))

Save this as gambling.dck. Then:

emd run gambling.dck

which will display either heads or tails.

The :oneof construct selects one of its branches with equal probability.

In general, when you emd run code, you’ll see the result of evaluating main.

Comments

Comments are indicated with a ; at the beginning of the line. Anything to the
right of the ; is ignored. So

%-

; This returns one of ’heads’ or ’tails’
(:def main
(:oneof
(| "heads")
(| "tails")))

is perfectly valid code and is functionally the same as the above.

4

Definitions & Names

We can define names and reference them later:

%-

(:def gambling
(:oneof
(| "heads")
(| "tails")))

(:def main
gambling)

We can emd run this and it will give the same results as above.

Branching

When you use :oneof, Dickinson picks one of the branches with equal probability.
If this is not what you want, you can use :branch:

%-

(:def unfairCoin
(:branch
(| 1.0 "heads")
(| 1.1 "tails")))

(:def main
unfairCoin)

This will scale things so that picking "tails" is a little more likely.

Interpolation

We can recombine past definitions via string interpolation:

%-

(:def adjective
(:oneof
(| "beautiful")
(| "auspicious")

5

(| "cold")))

(:def main
"What a ${adjective}, ${adjective} day!")

Multi-Line Strings

For large blocks of text, we can use multi-line strings.

(:def twain
’’’
Truth is the most valuable thing we have — so let us economize it.
— Mark Twain

’’’)

Multiline strings begin and end with '''.

Expressions

Branches, strings, and interpolations are expressions. A :def can attach an
expression to a name.

%-

(:def color
(:oneof
(| "yellow")
(| "blue")))

(:def adjective
(:oneof
(| "beautiful")
(| "auspicious")
(| color)))

(:def main
"What a ${adjective}, ${adjective} day!")

Branches can contain any expression, including names that have been defined
previously (such as color in the example above).

6

Lambdas

Lambdas are how we introduce functions in Dickinson.

(:def sayHello
(:lambda name text
"Hello, ${name}."))

Note that we have to specify the type of name - here, it stands in for some string,
so it is of type text.

We can use sayHello with $ (pronounced “apply”).

(:def name
(:oneof
(| "Alice")
(| "Bob")))

(:def main
($ sayHello name))

We can emd run this:

Hello, Bob.

$ f x corresponds to f x in ML.

Matches & Tuples

Suppose we want to randomly pick quotes. First we define a function to return
a quote by Fiona Apple:

(:def fionaAppleQuote
(:oneof
(|
’’’
"You’re more likely to get cut with a dull tool than a sharp one."
’’’)

(|
’’’
"You forgot the difference between equanimity and passivity."
’’’)))

7

Then we can define quote, which returns a quote as well as the person who said
it.

(:def quote
(:oneof
(| ("« Le beau est ce qu’on désire sans vouloir le manger. »", "Simone Weil"))
(| (fionaAppleQuote, "Fiona Apple"))))

Each branch returns a tuple.

We can use the :match construct to format the result of quote, viz.

(:def formatQuote
(:lambda q (text, text)
(:match q
[(quote, name)
’’’
${quote}

— ${name}
’’’])))

(:def main
$ formatQuote quote)

We can emd run this:

"You forgot the difference between equanimity and passivity."
— Fiona Apple

Note the use of the :lambda in formatQuote; we specify the type (text, text).

Tags

Tags can be used to split things based on cases.

tydecl number = Singular | Plural

(:def indefiniteArticle
(:lambda n number
(:match n
[Singular "a"]
[Plural "some"])))

8

Note that we specify the type number in (:lambda n number ...).

Tags themselves must begin with a capital letter while types begin with a
lowercase letter.

Tags are a restricted form of sum types.

Types

REPL

To enter a REPL:

emd repl

This will show a prompt

emd>

If we have

%-

(:def gambling
(:oneof
(| "heads")
(| "tails")))

in a file gambling.dck as above, we can load it with

emd> :l gambling.dck

We can then evaluate gambling if we like

emd> gambling

or manipulate names that are in scope like so:

emd> "The result of the coin toss is: ${gambling}"

We can also create new definitions:

9

emd> (:def announcer "RESULT: ${gambling}")
emd> announcer

Inspect the type of an expression with :type:

emd> :type announcer
text

We can define types in the REPL:

emd> tydecl case = Nominative | Oblique | Possessive
emd> :type Nominative
case

Saving & Restoring States

We can save the REPL state, including any definitions we’ve declared during
the session.

emd> :save replSt.emdi

If we exit the session we can restore the save definitions with

emd> :r replSt.emdi
emd> announcer

For reference information about the Dickinson REPL:

:help

Builtins

Dickinson has several builtin functions. You can see all names in scope (including
builtins) with :list, viz.

emd> :list
oulipo
allCaps
capitalize
titleCase

10

We can inspect the type like defined names:

emd> :type allCaps
(-> text text)

Try it out:

emd> $ allCaps "Guilt and self-laceration are indulgences"
GUILT AND SELF-LACERATION ARE INDULGENCES

Lints

emd has a linter which can make suggestions based on probable mistakes. We
can invoke it with emd lint:

emd lint silly.dck

Libraries

Dickinson allows pulling in definitions from other files with :include.

Using Libraries

Example

The color module is bundled by default:

(:include color)

%-

(:def main
"Today’s mood is ${color}")

Which gives:

Today’s mood is citron

The :include must come before the %-; definitions come after the %-.

color.dck contains:

11

%-

(:def color
(:oneof
(| "aubergine")
(| "cerulean")
(| "azure")
...

Third-Party Libraries

Upon encountering :include animals.mammal, Dickinson looks for a file
animals/mammal.dck.

When invoking emd, we can use the --include flag to add directories to search.

Writing Libraries

Libraries can contain definitions and type declarations.

You can run emd check on a library file to validate it.

Scripting

emd ignores any lines staring with #!; put

#!/usr/bin/env emd

and the top of a file to use emd as an interpreter. As an example, here is an
implementation of the Unix fortune program as a script:

#!/usr/bin/env emd

%-

(:def adjective
(:oneof
(| "good")
(| "bad")))

(:def main
"You will have a ${adjective} day")

12

Examples

Cowsay

Here is a variation on cowsay:

(:def cowsay
(:lambda txt text
’’’

${txt}

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

’’’))

Noun Declension

We can use tuples and tags to model nouns and noun declension.

tydecl case = Nominative | Accusative | Dative | Genitive | Instrumental

tydecl gender = Masculine | Feminine | Neuter

tydecl number = Singular | Plural

; demonstrative pronouns
; "this" or "these"
(:def decline
(:lambda x (case, gender, number)
(:match x
[(Nominative, Masculine, Singular) "þes"]
[(Accusative, Masculine, Singular) "þisne"]
[(Genitive, (Masculine|Neuter), Singular) "þisses"]
[(Dative, (Masculine|Neuter), Singular) "þissum"]
[(Instrumental, (Masculine|Neuter), Singular) "þys"]
[((Nominative|Accusative), Neuter, Singular) "þis"]
[(Nominative, Feminine, Singular) "þeos"]
[(Accusative, Feminine, Singular) "þas"]
[((Genitive|Dative|Instrumental), Feminine, Singular) "þisse"]
[((Nominative|Accusative), _, Plural) "þas"]

13

[(Genitive, _, Plural) "þissa"]
[(Dative, _, Plural) "þissum"]
)))

In the REPL:

emd> $ decline (Nominative, Feminine, Singular)
þeos

This actually has no element of randomness but such capabilities are important
for agreement in longer generative texts.

For guidance:

emd> :type decline
(-> (case, gender, number) text)

Divination Bot

This is a more sophisticated version of Maja Bäckvall’s divination bot. The
novelty is that by using tags, we get agreement between the Greek root and the
definition.

%-

tydecl means = Fish
| Stars
| Snakes
| Sun
| Animals
| Lips
| Dreams
| Placenta
| Poo
| Fingers
| Number
...

(:def prefix
(:lambda x means
(:match x
[Fish "ichthyo"]
[Stars "astro"]
[Snakes "ophio"]

14

https://twitter.com/botmancy

[Sun "helio"]
[Animals "zoo"]
[Lips "labio"]
[Dreams "oneiro"]
[Placenta "amnio"]
[Poo "scato"]
[Fingers "dactylo"]
[Number "numero"]
...
)))

(:def english
(:lambda x means
(:match x
[Fish "fish"]
[Stars "stars"]
[Birds "birds"]
[Snakes "snakes"]
[Sun "sun"]
[Animals "animals"]
[Lips "lips"]
[Dreams "dreams"]
[Placenta "placenta"]
[Poo "excrement"]
[Fingers "finger movements"]
[Number "numbers"]
...
)))

(:def means
(:pick means))

(:def postfix
(:branch
(| 1.0 "mancy")
(| 0.065 "scopy")
(| 0.03 "spication")
(| 0.06 "logy")))

(:def main
(:bind
[means means]
"${$prefix means}${postfix} - divination by ${$english means}"))

:pick is a builtin construct which randomly selects a tag of type means.

15

Note also :bind in place of :let — this construct resolves all randomness before
bringing means into scope.

So the Tracery bot might produce

uranospication

Divination using the appearance of proper names.

but ours produces results like

amniomancy - divination by placenta

We’ve also weighted postfix so that the more common suffixes (such as ‘-mancy’)
occur more often.

See the full example in examples/divinationBot.dck

Star Wars Name Generator

As an example, consider a Star Wars name generator:

%-

(:def main
(:let
[either
(:oneof
(| "Quarrel")
(| "Vult")
...
(| "Blot"))]

(:let
[firstname
(:oneof
(| "Yert")
(| "Wam")
(| "Pommet")
...
(| either))]

[lastname
(:oneof
(| "Grinell")
(| "Gorpax")

16

...
(| either))]

"${(:flatten firstname)} ${(:flatten lastname)}")))

The :flatten builtin makes all child outcomes equally likely. So (:flatten
firstname) will sample “Quarrel”, “Yert” with equal probability.

See the full example in examples/starwars.dck

Shakespearean Insult Generator

Inspired by the Shakespeare Insult Kit’s insult table, we can generate our own
insults.

%-

(:def adjective
(:oneof
(| "artless")
(| "base-court")
(| "bawdy")
(| "bat-fowling")
...

(:def noun
(:oneof
(| "apple-john")
(| "baggage")
(| "barnacle")
(| "bladder")
...

(:def main
("Thou ${adjective} ${adjective} ${noun}!"))

Run it get something like:

Thou beslubbering clouted hedge-pig!

See the full example in examples/shakespeare.dck.

17

http://web.mit.edu/dryfoo/Funny-pages/shakespeare-insult-kit.html

Lyrics Bot

Lyrics bots sample lyrics from some particular artist; see the africa by toto bot
for an example.

We can make our own Fiona Apple bot, viz.

%-

(:def fiona
(:oneof
(| "You forgot the difference between equanimity and passivity.")
(| "You’re more likely to get cut with a dull tool than a sharp one.")
(| "The child is gone.")
(|
’’’
Oh darling, it’s so sweet
You think you know how crazy, how crazy I am.
’’’)

...

(:def main
fiona)

See the full example in examples/fionaBot.dck

Magical Realism Bot

We can write our own magical realism bot using builtin libraries:

(:include profession)
(:include geography)

%-

(:def main
(:oneof
(|
(:let
[accomplishment
(:oneof
(|
(:let
[txt
(:oneof

18

https://twitter.com/africabytotobot

(| "Excel spreadsheet")
(| "palimpsest"))]

[power
(:oneof
(| "comfort animals")
(| "practice bilocation"))]

(:oneof
(| "discovers a ${txt} that allows her to ${power}"))))

(|
(:let
[topic
(:oneof
(| "balneology")
(| "teleology")
(| "nephrology")
(| "orgonomy"))]

"writes a monograph on ${topic}"))
(|
(:let
[secret
(:oneof
(| "immortality")
(| "heliophagy")
(| "levitation")
(| "good skin"))]

"discovers the secret to ${secret}")
))]

"A ${profession} in ${bigCity} ${accomplishment}"))))

This reuses the bigCity definition from the geography library and profession
from the profesion library.

This is not as sophisticated as the twitter bot but it is quite concise thanks to
the libraries we used.

19

https://twitter.com/MagicRealismBot

	Introduction
	Installing Dickinson
	Distributions
	Source
	Editor Integration
	Tags

	Program Structure
	Example
	Comments

	Definitions & Names
	Branching
	Interpolation
	Multi-Line Strings

	Expressions
	Lambdas
	Matches & Tuples
	Tags

	Types

	REPL
	Saving & Restoring States
	Builtins

	Lints
	Libraries
	Using Libraries
	Example
	Third-Party Libraries

	Writing Libraries

	Scripting
	Examples
	Cowsay
	Noun Declension
	Divination Bot
	Star Wars Name Generator
	Shakespearean Insult Generator
	Lyrics Bot
	Magical Realism Bot

