{-# LANGUAGE TypeFamilies #-} module Test.Utility where import qualified Numeric.LAPACK.Matrix.Square as Square import qualified Numeric.LAPACK.Matrix.Extent as Extent import qualified Numeric.LAPACK.Matrix as Matrix import qualified Numeric.LAPACK.Vector as Vector import qualified Numeric.LAPACK.Orthogonal as Ortho import Numeric.LAPACK.Matrix.Square (Square) import Numeric.LAPACK.Matrix.Shape (Order(RowMajor,ColumnMajor)) import Numeric.LAPACK.Matrix (ZeroInt) import Numeric.LAPACK.Vector (Vector) import Numeric.LAPACK.Scalar (RealOf, absolute) import qualified Numeric.Netlib.Class as Class import qualified Data.Array.Comfort.Storable as Array import qualified Data.Array.Comfort.Shape as Shape import Data.Array.Comfort.Storable (Array) import qualified Control.Monad.Trans.State as MS import Control.Monad (replicateM) import Control.Applicative (Applicative, liftA2, pure, (<*>), (<$>)) import qualified Data.List.HT as ListHT import qualified Data.Complex as Complex import Data.Complex (Complex((:+))) import Data.Traversable (traverse) import Data.Monoid (Monoid(mempty,mappend)) import Data.Semigroup (Semigroup((<>))) import Data.Eq.HT (equating) import qualified Test.QuickCheck as QC import Test.ChasingBottoms.IsBottom (isBottom) equalListWith :: (a -> a -> Bool) -> [a] -> [a] -> Bool equalListWith eq xs ys = and $ ListHT.takeWhileJust $ zipWith (\mx my -> case (mx,my) of (Nothing,Nothing) -> Nothing (Just x, Just y) -> Just $ eq x y _ -> Just False) (map Just xs ++ repeat Nothing) (map Just ys ++ repeat Nothing) equalArray :: (Shape.C shape, Eq shape, Class.Floating a) => Array shape a -> Array shape a -> Bool equalArray x y = if Array.shape x == Array.shape y then equalArrayBody x y else error "equalArray: shapes mismatch" equalArrayBody :: (Shape.C shape, Class.Floating a) => Array shape a -> Array shape a -> Bool equalArrayBody = getEqualArray $ Class.switchFloating (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) newtype EqualArray f a = EqualArray {getEqualArray :: f a -> f a -> Bool} approx :: (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> a -> a -> Bool approx tol x y = absolute (x-y) <= tol approxReal :: (Class.Real a) => a -> a -> a -> Bool approxReal tol x y = abs (x-y) <= tol approxArrayTol :: (Shape.C shape, Eq shape, Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> Array shape a -> Array shape a -> Bool approxArrayTol tol x y = if Array.shape x == Array.shape y then and $ zipWith (approx tol) (Array.toList x) (Array.toList y) else error "approxArray: shapes mismatch" approxArray :: (Shape.C shape, Eq shape, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Array shape a -> Array shape a -> Bool approxArray = approxArrayTol 1e-5 approxRealArrayTol :: (Shape.C shape, Eq shape, Class.Real a) => a -> Array shape a -> Array shape a -> Bool approxRealArrayTol tol x y = if Array.shape x == Array.shape y then and $ zipWith (approxReal tol) (Array.toList x) (Array.toList y) else error "approxRealArray: shapes mismatch" approxMatrix :: (Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> Matrix.Full vert horiz height width a -> Matrix.Full vert horiz height width a -> Bool approxMatrix tol x y = approxArrayTol tol (Matrix.toRowMajor $ Matrix.fromFull x) (Matrix.toRowMajor $ Matrix.fromFull y) maybeProperty :: (QC.Testable a) => Maybe a -> QC.Property maybeProperty = maybe (QC.property QC.Discard) QC.property genReal :: (Class.Real a) => Integer -> QC.Gen a genReal n = fromInteger <$> QC.choose (-n,n) genComplex :: (Class.Real a) => Integer -> QC.Gen (Complex a) genComplex n = liftA2 (Complex.:+) (genReal n) (genReal n) genElement :: (Class.Floating a) => Integer -> QC.Gen a genElement n = Class.switchFloating (genReal n) (genReal n) (genComplex n) (genComplex n) genArray :: (Shape.C shape, Class.Floating a) => Integer -> shape -> QC.Gen (Array shape a) genArray maxElem shape = Array.fromList shape <$> replicateM (Shape.size shape) (genElement maxElem) genArrayIndexed :: (Shape.Indexed shape, Class.Floating a) => shape -> (Shape.Index shape -> QC.Gen a) -> QC.Gen (Array shape a) genArrayIndexed shape f = Array.fromList shape <$> traverse f (Shape.indices shape) genArrayExtraDiag :: (Shape.Indexed shape, Shape.Index shape ~ (i,i), Eq i, Class.Floating a) => Integer -> shape -> (i -> QC.Gen a) -> QC.Gen (Array shape a) genArrayExtraDiag maxElem shape diag = genArrayIndexed shape $ \(r,c) -> if r==c then diag r else genElement maxElem select :: [a] -> QC.Gen (a, [a]) select = QC.elements . ListHT.removeEach genDistinct :: (Class.Floating a, RealOf a ~ ar, Class.Real ar) => Integer -> Integer -> ZeroInt -> QC.Gen (Vector ZeroInt a) genDistinct maxElemS maxElemD size@(Shape.ZeroBased n) = do let range k = map fromInteger [(-k)..k] xs <- MS.evalStateT (replicateM n $ MS.StateT select) $ Class.switchFloating (range maxElemS) (range maxElemD) (liftA2 (:+) (range maxElemS) (range maxElemS)) (liftA2 (:+) (range maxElemD) (range maxElemD)) return $ Vector.fromList size xs genOrder :: QC.Gen Order genOrder = QC.elements [RowMajor, ColumnMajor] invertible :: (Shape.C sh, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Square sh a -> Bool invertible a = absolute (Square.determinant a) > 0.1 fullRankTall :: (Shape.C height, Shape.C width, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Matrix.Tall height width a -> Bool fullRankTall a = Ortho.determinantAbsolute a > 0.1 isIdentity :: (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> Square ZeroInt a -> Bool isIdentity tol eye = approxArrayTol tol eye (Square.identityFrom eye) newtype Tagged tag a = Tagged a type TaggedGen tag a = Tagged tag (QC.Gen a) instance Functor (Tagged tag) where fmap f (Tagged a) = Tagged (f a) instance Applicative (Tagged tag) where pure = Tagged Tagged f <*> Tagged a = Tagged (f a) checkForAllPlain :: (Show a, QC.Testable test) => TaggedGen tag a -> (a -> test) -> Tagged tag QC.Property checkForAllPlain (Tagged gen) test = Tagged $ QC.forAll gen test checkForAll :: (Show a, QC.Testable test) => TaggedGen tag (a, Match) -> (a -> test) -> Tagged tag QC.Property checkForAll taggedGen test = checkForAllPlain taggedGen $ \(a,match) -> case match of Match -> QC.property $ test a Mismatch -> QC.property $ isBottom $ test a {- | In @DontForceMatch@ mode the test generators may ignore generating matching dimensions. If dimensions actually mismatch, a @Mismatch@ value is returned. In this case the test driver asserts that the test routine is aborted with an error. However, a typical test type might be \"generic implementation = specialized implementation\". If the generic implementation correctly checks the sizes, then the tester cannot detect a missing check in the specialized implementation. So far the proposed way to avoid this problem is to add a test that relies solely on the function to be tested. If you have no better idea, compare an implementation with itself. -} data Match = Mismatch | Match deriving (Eq, Show) instance Semigroup Match where (<>) = mappend instance Monoid Match where mempty = Match mappend Match Match = Match mappend _ _ = Mismatch prefix :: String -> [(String, test)] -> [(String, test)] prefix msg = map (\(str,test) -> (msg ++ "." ++ str, test))