{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} module Numeric.LAPACK.Matrix.Basic where import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent import qualified Numeric.LAPACK.Matrix.RowMajor as RowMajor import qualified Numeric.LAPACK.Vector as Vector import qualified Numeric.LAPACK.Private as Private import Numeric.LAPACK.Matrix.Shape.Private (Order(RowMajor, ColumnMajor), transposeFromOrder, flipOrder) import Numeric.LAPACK.Matrix.Modifier (Conjugation(NonConjugated)) import Numeric.LAPACK.Matrix.Private (Full, Tall, Wide, General, ShapeInt, revealOrder) import Numeric.LAPACK.Vector (Vector) import Numeric.LAPACK.Scalar (RealOf, zero, one) import Numeric.LAPACK.Shape.Private (Unchecked(Unchecked)) import Numeric.LAPACK.Private (pointerSeq, copyTransposed, copySubMatrix, copyBlock) import qualified Numeric.BLAS.FFI.Generic as BlasGen import qualified Numeric.Netlib.Utility as Call import qualified Numeric.Netlib.Class as Class import qualified Data.Array.Comfort.Storable.Unchecked as Array import qualified Data.Array.Comfort.Shape as Shape import Data.Array.Comfort.Storable.Unchecked (Array(Array)) import Data.Array.Comfort.Shape ((:+:)((:+:))) import Foreign.Marshal.Array (advancePtr) import Foreign.ForeignPtr (ForeignPtr, withForeignPtr) import Control.Monad.Trans.Cont (ContT(ContT), evalContT) import Control.Monad.IO.Class (liftIO) import Data.Complex (Complex) caseTallWide :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width) => Full vert horiz height width a -> Either (Tall height width a) (Wide height width a) caseTallWide (Array shape a) = either (Left . flip Array a) (Right . flip Array a) $ MatrixShape.caseTallWide shape transpose :: (Extent.C vert, Extent.C horiz) => Full vert horiz height width a -> Full horiz vert width height a transpose = Array.mapShape MatrixShape.transpose adjoint :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Full vert horiz height width a -> Full horiz vert width height a adjoint = transpose . Vector.conjugate swapMultiply :: (Extent.C vertA, Extent.C vertB, Extent.C horizA, Extent.C horizB) => (matrix -> Full horizA vertA widthA heightA a -> Full horizB vertB widthB heightB a) -> Full vertA horizA heightA widthA a -> matrix -> Full vertB horizB heightB widthB a swapMultiply multiplyTrans a b = transpose $ multiplyTrans b $ transpose a mapHeight :: (Extent.GeneralTallWide vert horiz, Extent.GeneralTallWide horiz vert) => (heightA -> heightB) -> Full vert horiz heightA width a -> Full vert horiz heightB width a mapHeight f = Array.mapShape (\(MatrixShape.Full order extent) -> MatrixShape.Full order $ Extent.mapHeight f extent) mapWidth :: (Extent.GeneralTallWide vert horiz, Extent.GeneralTallWide horiz vert) => (widthA -> widthB) -> Full vert horiz height widthA a -> Full vert horiz height widthB a mapWidth f = Array.mapShape (\(MatrixShape.Full order extent) -> MatrixShape.Full order $ Extent.mapWidth f extent) uncheck :: (Extent.C vert, Extent.C horiz) => Full vert horiz height width a -> Full vert horiz (Unchecked height) (Unchecked width) a uncheck = Array.mapShape (\(MatrixShape.Full order extent) -> MatrixShape.Full order $ Extent.mapWrap Unchecked Unchecked extent) recheck :: (Extent.C vert, Extent.C horiz) => Full vert horiz (Unchecked height) (Unchecked width) a -> Full vert horiz height width a recheck = Array.mapShape (\(MatrixShape.Full order extent) -> MatrixShape.Full order $ Extent.recheck extent) singleRow :: Order -> Vector width a -> General () width a singleRow order = Array.mapShape (MatrixShape.general order ()) singleColumn :: Order -> Vector height a -> General height () a singleColumn order = Array.mapShape (flip (MatrixShape.general order) ()) flattenRow :: General () width a -> Vector width a flattenRow = Array.mapShape MatrixShape.fullWidth flattenColumn :: General height () a -> Vector height a flattenColumn = Array.mapShape MatrixShape.fullHeight liftRow :: Order -> (Vector height0 a -> Vector height1 b) -> General () height0 a -> General () height1 b liftRow order f = singleRow order . f . flattenRow liftColumn :: Order -> (Vector height0 a -> Vector height1 b) -> General height0 () a -> General height1 () b liftColumn order f = singleColumn order . f . flattenColumn unliftRow :: Order -> (General () height0 a -> General () height1 b) -> Vector height0 a -> Vector height1 b unliftRow order f = flattenRow . f . singleRow order unliftColumn :: Order -> (General height0 () a -> General height1 () b) -> Vector height0 a -> Vector height1 b unliftColumn order f = flattenColumn . f . singleColumn order forceRowMajor :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Full vert horiz height width a -> Full vert horiz height width a forceRowMajor (Array shape@(MatrixShape.Full order extent) x) = case order of RowMajor -> Array shape x ColumnMajor -> Array.unsafeCreate (MatrixShape.Full RowMajor extent) $ \yPtr -> withForeignPtr x $ \xPtr -> do let (height, width) = Extent.dimensions extent let n = Shape.size width let m = Shape.size height Private.copyTransposed n m xPtr n yPtr forceOrder :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Order -> Full vert horiz height width a -> Full vert horiz height width a forceOrder order = case order of RowMajor -> forceRowMajor ColumnMajor -> transpose . forceRowMajor . transpose takeSub :: (Extent.C vert, Extent.C horiz, Shape.C heightA, Shape.C height, Shape.C width, Class.Floating a) => heightA -> Int -> ForeignPtr a -> MatrixShape.Full vert horiz height width -> Full vert horiz height width a takeSub heightA k a shape@(MatrixShape.Full order extentB) = Array.unsafeCreateWithSize shape $ \blockSize bPtr -> withForeignPtr a $ \aPtr -> let ma = Shape.size heightA mb = Shape.size $ Extent.height extentB n = Shape.size $ Extent.width extentB in case order of RowMajor -> copyBlock blockSize (advancePtr aPtr (k*n)) bPtr ColumnMajor -> copySubMatrix mb n ma (advancePtr aPtr k) mb bPtr takeTop :: (Extent.C vert, Shape.C height0, Shape.C height1, Shape.C width, Class.Floating a) => Full vert Extent.Big (height0:+:height1) width a -> Full vert Extent.Big height0 width a takeTop (Array (MatrixShape.Full order extentA) a) = let heightA@(heightB:+:_) = Extent.height extentA extentB = Extent.reduceWideHeight heightB extentA in takeSub heightA 0 a $ MatrixShape.Full order extentB takeBottom :: (Extent.C vert, Shape.C height0, Shape.C height1, Shape.C width, Class.Floating a) => Full vert Extent.Big (height0:+:height1) width a -> Full vert Extent.Big height1 width a takeBottom (Array (MatrixShape.Full order extentA) a) = let heightA@(height0:+:heightB) = Extent.height extentA extentB = Extent.reduceWideHeight heightB extentA in takeSub heightA (Shape.size height0) a $ MatrixShape.Full order extentB takeLeft :: (Extent.C vert, Shape.C height, Shape.C width0, Shape.C width1, Class.Floating a) => Full Extent.Big vert height (width0:+:width1) a -> Full Extent.Big vert height width0 a takeLeft = transpose . takeTop . transpose takeRight :: (Extent.C vert, Shape.C height, Shape.C width0, Shape.C width1, Class.Floating a) => Full Extent.Big vert height (width0:+:width1) a -> Full Extent.Big vert height width1 a takeRight = transpose . takeBottom . transpose splitRows :: (Extent.C vert, Shape.C width, Class.Floating a) => Int -> Full vert Extent.Big ShapeInt width a -> Full vert Extent.Big (ShapeInt:+:ShapeInt) width a splitRows k = Array.mapShape (\(MatrixShape.Full order extent) -> MatrixShape.Full order $ Extent.reduceWideHeight (Shape.zeroBasedSplit k $ Extent.height extent) extent) takeRows, dropRows :: (Extent.C vert, Shape.C width, Class.Floating a) => Int -> Full vert Extent.Big ShapeInt width a -> Full vert Extent.Big ShapeInt width a takeRows k = takeTop . splitRows k dropRows k = takeBottom . splitRows k takeColumns, dropColumns :: (Extent.C horiz, Shape.C height, Class.Floating a) => Int -> Full Extent.Big horiz height ShapeInt a -> Full Extent.Big horiz height ShapeInt a takeColumns k = transpose . takeRows k . transpose dropColumns k = transpose . dropRows k . transpose data OrderBias = LeftBias | RightBias | ContiguousBias deriving (Eq, Ord, Enum, Show) beside :: (Extent.C vertA, Extent.C vertB, Extent.C vertC, Shape.C height, Eq height, Shape.C widthA, Shape.C widthB, Class.Floating a) => OrderBias -> Extent.AppendMode vertA vertB vertC height widthA widthB -> Full vertA Extent.Big height widthA a -> Full vertB Extent.Big height widthB a -> Full vertC Extent.Big height (widthA:+:widthB) a beside orderBias (Extent.AppendMode appendMode) (Array (MatrixShape.Full orderA extentA) a) (Array (MatrixShape.Full orderB extentB) b) = let (heightA,widthA) = Extent.dimensions extentA (heightB,widthB) = Extent.dimensions extentB n = Shape.size heightA ma = Shape.size widthA; volA = n*ma mb = Shape.size widthB; volB = n*mb m = ma+mb create order act = Array.unsafeCreate (MatrixShape.Full order $ appendMode extentA extentB) $ \cPtr -> withForeignPtr a $ \aPtr -> withForeignPtr b $ \bPtr -> act aPtr bPtr cPtr $ advancePtr cPtr $ case order of RowMajor -> ma ColumnMajor -> volA in if heightA /= heightB then error "beside: mismatching heights" else case (orderA,orderB) of (RowMajor,RowMajor) -> create RowMajor $ \aPtr bPtr cPtr _ -> evalContT $ do maPtr <- Call.cint ma mbPtr <- Call.cint mb incxPtr <- Call.cint 1 incyPtr <- Call.cint 1 liftIO $ sequence_ $ take n $ zipWith3 (\akPtr bkPtr ckPtr -> do BlasGen.copy maPtr akPtr incxPtr ckPtr incyPtr BlasGen.copy mbPtr bkPtr incxPtr (ckPtr `advancePtr` ma) incyPtr) (pointerSeq ma aPtr) (pointerSeq mb bPtr) (pointerSeq m cPtr) (RowMajor,ColumnMajor) -> case orderBias of LeftBias -> create RowMajor $ \aPtr bPtr clPtr crPtr -> do copySubMatrix ma n ma aPtr m clPtr copyTransposed mb n bPtr m crPtr _ -> create ColumnMajor $ \aPtr bPtr clPtr crPtr -> do copyTransposed n ma aPtr n clPtr copyBlock volB bPtr crPtr (ColumnMajor,RowMajor) -> case orderBias of RightBias -> create RowMajor $ \aPtr bPtr clPtr crPtr -> do copyTransposed ma n aPtr m clPtr copySubMatrix mb n mb bPtr m crPtr _ -> create ColumnMajor $ \aPtr bPtr clPtr crPtr -> do copyBlock volA aPtr clPtr copyTransposed n mb bPtr n crPtr (ColumnMajor,ColumnMajor) -> create ColumnMajor $ \aPtr bPtr clPtr crPtr -> evalContT $ do naPtr <- Call.cint volA nbPtr <- Call.cint volB incxPtr <- Call.cint 1 incyPtr <- Call.cint 1 liftIO $ do BlasGen.copy naPtr aPtr incxPtr clPtr incyPtr BlasGen.copy nbPtr bPtr incxPtr crPtr incyPtr above :: (Extent.C horizA, Extent.C horizB, Extent.C horizC, Shape.C width, Eq width, Shape.C heightA, Shape.C heightB, Class.Floating a) => OrderBias -> Extent.AppendMode horizA horizB horizC width heightA heightB -> Full Extent.Big horizA heightA width a -> Full Extent.Big horizB heightB width a -> Full Extent.Big horizC (heightA:+:heightB) width a above orderBias appendMode a b = transpose $ beside orderBias appendMode (transpose a) (transpose b) liftRowMajor :: (Extent.C vert, Extent.C horiz) => (Array (height, width) a -> Array (height, width) b) -> (Array (width, height) a -> Array (width, height) b) -> Full vert horiz height width a -> Full vert horiz height width b liftRowMajor fr fc a = either (Array.reshape (Array.shape a) . fr) (Array.reshape (Array.shape a) . fc) $ revealOrder a scaleRows :: (Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Class.Floating a) => Vector height a -> Full vert horiz height width a -> Full vert horiz height width a scaleRows x = liftRowMajor (RowMajor.scaleRows x) (RowMajor.scaleColumns x) scaleColumns :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width, Class.Floating a) => Vector width a -> Full vert horiz height width a -> Full vert horiz height width a scaleColumns x = transpose . scaleRows x . transpose scaleRowsComplex :: (Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Class.Real a) => Vector height a -> Full vert horiz height width (Complex a) -> Full vert horiz height width (Complex a) scaleRowsComplex x = liftRowMajor (RowMajor.recomplex . RowMajor.scaleRows x . RowMajor.decomplex) (RowMajor.recomplex . RowMajor.scaleColumns (RowMajor.tensorProduct (Left NonConjugated) x (Vector.one Shape.Enumeration)) . RowMajor.decomplex) scaleColumnsComplex :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width, Class.Real a) => Vector width a -> Full vert horiz height width (Complex a) -> Full vert horiz height width (Complex a) scaleColumnsComplex x = transpose . scaleRowsComplex x . transpose scaleRowsReal :: (Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Class.Floating a) => Vector height (RealOf a) -> Full vert horiz height width a -> Full vert horiz height width a scaleRowsReal = getScaleRowsReal $ Class.switchFloating (ScaleRowsReal scaleRows) (ScaleRowsReal scaleRows) (ScaleRowsReal scaleRowsComplex) (ScaleRowsReal scaleRowsComplex) newtype ScaleRowsReal f g a = ScaleRowsReal {getScaleRowsReal :: f (RealOf a) -> g a -> g a} scaleColumnsReal :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width, Class.Floating a) => Vector width (RealOf a) -> Full vert horiz height width a -> Full vert horiz height width a scaleColumnsReal x = transpose . scaleRowsReal x . transpose multiplyVector :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width, Class.Floating a) => Full vert horiz height width a -> Vector width a -> Vector height a multiplyVector a x = let width = MatrixShape.fullWidth $ Array.shape a in if width == Array.shape x then multiplyVectorUnchecked a x else error "multiplyVector: width shapes mismatch" multiplyVectorUnchecked :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Full vert horiz height width a -> Vector width a -> Vector height a multiplyVectorUnchecked (Array shape@(MatrixShape.Full order extent) a) (Array _ x) = Array.unsafeCreate (Extent.height extent) $ \yPtr -> do let (m,n) = MatrixShape.dimensions shape let lda = m evalContT $ do transPtr <- Call.char $ transposeFromOrder order mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.number one aPtr <- ContT $ withForeignPtr a ldaPtr <- Call.leadingDim lda xPtr <- ContT $ withForeignPtr x incxPtr <- Call.cint 1 betaPtr <- Call.number zero incyPtr <- Call.cint 1 liftIO $ Private.gemv transPtr mPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr {- | Multiply two matrices with the same dimension constraints. E.g. you can multiply 'General' and 'General' matrices, or 'Square' and 'Square' matrices. It may seem to be overly strict in this respect, but that design supports type inference the best. You can lift the restrictions by generalizing operands with 'Square.toFull', 'Matrix.fromFull', 'Matrix.generalizeTall' or 'Matrix.generalizeWide'. -} multiply, multiplyColumnMajor :: (Extent.C vert, Extent.C horiz, Shape.C height, Shape.C fuse, Eq fuse, Shape.C width, Class.Floating a) => Full vert horiz height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width a -- preserve order of the right factor multiply (Array (MatrixShape.Full orderA extentA) a) (Array (MatrixShape.Full orderB extentB) b) = case Extent.fuse extentA extentB of Nothing -> error "multiply: fuse shapes mismatch" Just extent -> Array.unsafeCreate (MatrixShape.Full orderB extent) $ \cPtr -> do let (height,fuse) = Extent.dimensions extentA let width = Extent.width extentB let m = Shape.size height let n = Shape.size width let k = Shape.size fuse case orderB of RowMajor -> Private.multiplyMatrix (flipOrder orderB) (flipOrder orderA) n k m b a cPtr ColumnMajor -> Private.multiplyMatrix orderA orderB m k n a b cPtr -- always return ColumnMajor multiplyColumnMajor (Array (MatrixShape.Full orderA extentA) a) (Array (MatrixShape.Full orderB extentB) b) = case Extent.fuse extentA extentB of Nothing -> error "multiply: fuse shapes mismatch" Just extent -> Array.unsafeCreate (MatrixShape.Full ColumnMajor extent) $ \cPtr -> do let (height,fuse) = Extent.dimensions extentA let width = Extent.width extentB let m = Shape.size height let n = Shape.size width let k = Shape.size fuse Private.multiplyMatrix orderA orderB m k n a b cPtr