{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ConstraintKinds #-} module Test.Utility where import qualified Numeric.LAPACK.Matrix.Hermitian as Herm import qualified Numeric.LAPACK.Matrix.Array as ArrMatrix import qualified Numeric.LAPACK.Matrix.Shape as MatrixShape import qualified Numeric.LAPACK.Matrix.Shape.Omni as Omni import qualified Numeric.LAPACK.Matrix.Extent as Extent import qualified Numeric.LAPACK.Matrix as Matrix import qualified Numeric.LAPACK.Vector as Vector import qualified Numeric.LAPACK.Orthogonal.Householder as HH import qualified Numeric.LAPACK.Orthogonal as Ortho import Numeric.LAPACK.Matrix.Array (ArrayMatrix) import Numeric.LAPACK.Matrix.Shape.Omni (Omni) import Numeric.LAPACK.Matrix.Layout (Order(RowMajor,ColumnMajor)) import Numeric.LAPACK.Matrix (Matrix, ShapeInt) import Numeric.LAPACK.Vector (Vector) import Numeric.LAPACK.Scalar (RealOf, absolute) import qualified Numeric.Netlib.Class as Class import qualified Data.Array.Comfort.Storable as Array import qualified Data.Array.Comfort.Shape as Shape import Data.Array.Comfort.Storable (Array) import Data.Array.Comfort.Shape ((::+)) import qualified Control.Monad.Trans.State as MS import Control.Monad (replicateM) import Control.Applicative (Applicative, liftA2, pure, (<*>), (<$>)) import qualified Data.List.HT as ListHT import qualified Data.Complex as Complex import Data.Complex (Complex((:+))) import Data.Traversable (traverse) import Data.Monoid (Monoid(mempty,mappend)) import Data.Semigroup (Semigroup((<>))) import Data.Tuple.HT (mapFst) import Data.Eq.HT (equating) import qualified Test.QuickCheck as QC import Test.ChasingBottoms.IsBottom (isBottom) equalListWith :: (a -> a -> Bool) -> [a] -> [a] -> Bool equalListWith eq xs ys = and $ ListHT.takeWhileJust $ zipWith (\mx my -> case (mx,my) of (Nothing,Nothing) -> Nothing (Just x, Just y) -> Just $ eq x y _ -> Just False) (map Just xs ++ repeat Nothing) (map Just ys ++ repeat Nothing) equalVectorBody :: (Shape.C shape, Class.Floating a) => Array shape a -> Array shape a -> Bool equalVectorBody = getEqualArray $ Class.switchFloating (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) (EqualArray $ equating Array.toList) newtype EqualArray f a = EqualArray {getEqualArray :: f a -> f a -> Bool} equalVector :: (Shape.C shape, Eq shape, Class.Floating a) => Array shape a -> Array shape a -> Bool equalVector x y = if Array.shape x == Array.shape y then equalVectorBody x y else error "equalArray: shapes mismatch" equalArray :: (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Eq height, Eq width, Class.Floating a) => ArrayMatrix pack property lower upper meas vert horiz height width a -> ArrayMatrix pack property lower upper meas vert horiz height width a -> Bool equalArray x y = equalVector (ArrMatrix.unwrap x) (ArrMatrix.unwrap y) equalMatrix :: (MatrixShape.PowerStrip lower, MatrixShape.PowerStrip upper) => (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Eq height, Eq width, Class.Floating a) => ArrayMatrix pack property lower upper meas vert horiz height width a -> ArrayMatrix pack property lower upper meas vert horiz height width a -> Bool equalMatrix x y = equalArray (Matrix.adaptOrder y x) y approx :: (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> a -> a -> Bool approx tol x y = absolute (x-y) <= tol approxReal :: (Class.Real a) => a -> a -> a -> Bool approxReal tol x y = abs (x-y) <= tol approxVectorTol :: (Shape.C shape, Eq shape, Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> Array shape a -> Array shape a -> Bool approxVectorTol tol x y = if Array.shape x == Array.shape y then and $ zipWith (approx tol) (Array.toList x) (Array.toList y) else error "approxArray: shapes mismatch" approxVector :: (Shape.C shape, Eq shape, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Array shape a -> Array shape a -> Bool approxVector = approxVectorTol 1e-5 approxRealVectorTol :: (Shape.C shape, Eq shape, Class.Real a) => a -> Array shape a -> Array shape a -> Bool approxRealVectorTol tol x y = if Array.shape x == Array.shape y then and $ zipWith (approxReal tol) (Array.toList x) (Array.toList y) else error "approxRealArray: shapes mismatch" approxArrayTol :: (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Eq height, Eq width) => (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> ArrayMatrix pack property lower upper meas vert horiz height width a -> ArrayMatrix pack property lower upper meas vert horiz height width a -> Bool approxArrayTol tol x y = approxVectorTol tol (ArrMatrix.unwrap x) (ArrMatrix.unwrap y) approxArray :: (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Eq height, Eq width) => (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ArrayMatrix pack property lower upper meas vert horiz height width a -> ArrayMatrix pack property lower upper meas vert horiz height width a -> Bool approxArray x y = approxVector (ArrMatrix.unwrap x) (ArrMatrix.unwrap y) approxMatrix :: (MatrixShape.PowerStrip lower, MatrixShape.PowerStrip upper) => (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Eq height, Eq width) => (Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> ArrayMatrix pack property lower upper meas vert horiz height width a -> ArrayMatrix pack property lower upper meas vert horiz height width a -> Bool approxMatrix tol x y = approxArrayTol tol x $ Matrix.adaptOrder x y maybeConjugate :: (Matrix.Complex typ) => (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Class.Floating a) => HH.Conjugation -> Matrix typ xl xu lower upper meas vert horiz height width a -> Matrix typ xl xu lower upper meas vert horiz height width a maybeConjugate HH.NonConjugated = id maybeConjugate HH.Conjugated = Matrix.conjugate type NonEmptyInt = ()::+ShapeInt type EInt = Either () Int genReal :: (Class.Real a) => Integer -> QC.Gen a genReal n = fromInteger <$> QC.choose (-n,n) genComplex :: (Class.Real a) => Integer -> QC.Gen (Complex a) genComplex n = liftA2 (Complex.:+) (genReal n) (genReal n) genElement :: (Class.Floating a) => Integer -> QC.Gen a genElement n = Class.switchFloating (genReal n) (genReal n) (genComplex n) (genComplex n) genVector :: (Shape.C shape, Class.Floating a) => Integer -> shape -> QC.Gen (Array shape a) genVector maxElem shape = Array.fromList shape <$> replicateM (Shape.size shape) (genElement maxElem) genArray :: (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width, Class.Floating a) => Integer -> Omni pack property lower upper meas vert horiz height width -> QC.Gen (ArrayMatrix pack property lower upper meas vert horiz height width a) genArray maxElem shape = fmap ArrMatrix.Array $ genVector maxElem shape genArrayIndexed :: (Shape.Indexed shape, Class.Floating a) => shape -> (Shape.Index shape -> QC.Gen a) -> QC.Gen (Array shape a) genArrayIndexed shape f = Array.fromList shape <$> traverse f (Shape.indices shape) genArrayExtraDiag_ :: (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Shape.C width) => (Shape.Indexed shape, Shape.Index shape ~ (i,i), Eq i, Class.Floating a) => Integer -> (Omni pack property lower upper meas vert horiz height width -> shape) -> Omni pack property lower upper meas vert horiz height width -> (i -> QC.Gen a) -> QC.Gen (ArrayMatrix pack property lower upper meas vert horiz height width a) genArrayExtraDiag_ maxElem toPlainShape shape diag = fmap (ArrMatrix.Array . Array.reshape shape) $ genArrayIndexed (toPlainShape shape) $ \(r,c) -> if r==c then diag r else genElement maxElem genArrayExtraDiag :: (MatrixShape.Packing pack) => (MatrixShape.DiagUpLo lo up, MatrixShape.TriDiag diag) => (Shape.C sh, Shape.Indexed sh, Shape.Index sh ~ i, Eq i) => (Class.Floating a) => Integer -> MatrixShape.Quadratic pack diag lo up sh -> (i -> QC.Gen a) -> QC.Gen (ArrMatrix.Quadratic pack diag lo up sh a) genArrayExtraDiag maxElem shape0 diag = flip runGenTriangularLoUp shape0 $ MatrixShape.switchDiagUpLo (GenTriangularLoUp $ \shape -> fmap (ArrMatrix.Array . Array.reshape shape) $ genArrayIndexed (MatrixShape.squareSize shape) diag) (GenTriangularLoUp $ \shape -> genArrayExtraDiag_ maxElem Omni.toPlain shape diag) (GenTriangularLoUp $ \shape -> genArrayExtraDiag_ maxElem Omni.toPlain shape diag) newtype GenTriangularLoUp pack diag sh a lo up = GenTriangularLoUp { runGenTriangularLoUp :: MatrixShape.Quadratic pack diag lo up sh -> QC.Gen (ArrMatrix.Quadratic pack diag lo up sh a) } select :: [a] -> QC.Gen (a, [a]) select = QC.elements . ListHT.removeEach genDistinct :: (Class.Floating a, RealOf a ~ ar, Class.Real ar) => [Integer] -> [Integer] -> ShapeInt -> QC.Gen (Vector ShapeInt a) genDistinct elemsS elemsD size@(Shape.ZeroBased n) = do let range ks = map fromInteger ks fmap (Vector.fromList size) $ MS.evalStateT (replicateM n $ MS.StateT select) $ Class.switchFloating (range elemsS) (range elemsD) (liftA2 (:+) (range elemsS) (range elemsS)) (liftA2 (:+) (range elemsD) (range elemsD)) genOrder :: QC.Gen Order genOrder = QC.elements [RowMajor, ColumnMajor] invertible :: (Matrix.Determinant typ xl xu, MatrixShape.Strip lower, MatrixShape.Strip upper, Shape.C sh, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Matrix.Quadratic typ xl xu lower upper sh a -> Bool invertible a = absolute (Matrix.determinant a) > 0.1 fullRankTall :: (Shape.C height, Shape.C width, Class.Floating a, RealOf a ~ ar, Class.Real ar) => Matrix.Tall height width a -> Bool fullRankTall a = Ortho.determinantAbsolute a > 0.1 isIdentity :: (Omni.Quadratic pack property lower upper, Omni.Quadratic pack property upper lower, Shape.C sh, Eq sh, Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> ArrMatrix.Quadratic pack property lower upper sh a -> Bool isIdentity tol eye = approxArrayTol tol eye (Matrix.identityFrom eye) isUnitary :: (Extent.Measure meas, Extent.C vert, Class.Floating a, RealOf a ~ ar, Class.Real ar) => ar -> Matrix.Full meas vert Extent.Small ShapeInt ShapeInt a -> Bool isUnitary tol = isIdentity tol . ArrMatrix.asPacked . Herm.gramian . Matrix.fromFull addMatrices :: (ArrMatrix.Homogeneous property) => (Extent.Measure meas, Extent.C vert, Extent.C horiz) => (Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) => Omni pack property lower upper meas vert horiz height width -> [ArrayMatrix pack property lower upper meas vert horiz height width a] -> ArrayMatrix pack property lower upper meas vert horiz height width a addMatrices sh = foldl (ArrMatrix.liftOmni2 Vector.add) (ArrMatrix.zero sh) infixl 3 !||| infixl 2 !=== (!|||) :: (Shape.C height, Eq height, Shape.C widthA, Shape.C widthB, Class.Floating a) => Matrix.General height widthA a -> Matrix.General height widthB a -> Matrix.General height (widthA::+widthB) a (!|||) = Matrix.beside Matrix.leftBias Extent.appendAny (!===) :: (Shape.C width, Eq width, Shape.C heightA, Shape.C heightB, Class.Floating a) => Matrix.General heightA width a -> Matrix.General heightB width a -> Matrix.General (heightA::+heightB) width a (!===) = Matrix.above Matrix.leftBias Extent.appendAny newtype Tagged tag a = Tagged a deriving (Show) type TaggedGen tag a = Tagged tag (QC.Gen a) instance Functor (Tagged tag) where fmap f (Tagged a) = Tagged (f a) instance Applicative (Tagged tag) where pure = Tagged Tagged f <*> Tagged a = Tagged (f a) checkForAllPlain :: (Show a, QC.Testable test) => TaggedGen tag a -> (a -> test) -> Tagged tag QC.Property checkForAllPlain (Tagged gen) test = Tagged $ QC.forAll gen test checkForAll :: (Show a, QC.Testable test) => TaggedGen tag (a, Match) -> (a -> test) -> Tagged tag QC.Property checkForAll taggedGen test = checkForAllPlain taggedGen $ \(a,match) -> case match of Match -> QC.property $ test a Mismatch -> QC.property $ isBottom $ test a {- | In @DontForceMatch@ mode the test generators may ignore generating matching dimensions. If dimensions actually mismatch, a @Mismatch@ value is returned. In this case the test driver asserts that the test routine is aborted with an error. However, a typical test type might be \"generic implementation = specialized implementation\". If the generic implementation correctly checks the sizes, then the tester cannot detect a missing check in the specialized implementation. So far the proposed way to avoid this problem is to add a test that relies solely on the function to be tested. If you have no better idea, compare an implementation with itself. -} data Match = Mismatch | Match deriving (Eq, Show) instance Semigroup Match where (<>) = mappend instance Monoid Match where mempty = Match mappend Match Match = Match mappend _ _ = Mismatch prefix :: String -> [(String, test)] -> [(String, test)] prefix msg = map $ mapFst (\str -> msg ++ "." ++ str) suffix :: String -> [(String, test)] -> [(String, test)] suffix msg = map $ mapFst (\str -> str ++ "." ++ msg)