{-# LANGUAGE TypeFamilies #-} module Numeric.LAPACK.Orthogonal ( leastSquares, minimumNorm, leastSquaresMinimumNormRCond, pseudoInverseRCond, project, leastSquaresConstraint, gaussMarkovLinearModel, determinant, determinantAbsolute, complement, affineFrameFromFiber, affineFiberFromFrame, householder, householderTall, ) where import qualified Numeric.LAPACK.Orthogonal.Householder as HH import qualified Numeric.LAPACK.Orthogonal.Basic as Plain import qualified Numeric.LAPACK.Matrix.Multiply as Multiply import qualified Numeric.LAPACK.Matrix.Triangular as Triangular import qualified Numeric.LAPACK.Matrix.Layout as Layout import qualified Numeric.LAPACK.Matrix.Array.Unpacked as Unpacked import qualified Numeric.LAPACK.Matrix.Array.Private as ArrMatrix import qualified Numeric.LAPACK.Matrix.Basic as Basic import qualified Numeric.LAPACK.Matrix.Type.Private as Matrix import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent import qualified Numeric.LAPACK.Vector as Vector import qualified Numeric.LAPACK.Shape as ExtShape import Numeric.LAPACK.Matrix.Array.Private (Full, General, Tall, Wide, Square) import Numeric.LAPACK.Matrix.Private (ShapeInt) import Numeric.LAPACK.Vector (Vector, (|-|)) import Numeric.LAPACK.Scalar (RealOf) import qualified Numeric.Netlib.Class as Class import qualified Data.Array.Comfort.Shape as Shape import Data.Tuple.HT (mapSnd) {- | If @x = leastSquares a b@ then @x@ minimizes @Vector.norm2 (multiply a x `sub` b)@. Precondition: @a@ must have full rank and @height a >= width a@. -} leastSquares :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Shape.C nrhs, Class.Floating a) => Full meas horiz Extent.Small height width a -> Full meas vert horiz height nrhs a -> Full meas vert horiz width nrhs a leastSquares = ArrMatrix.lift2 Plain.leastSquares {- | The vector @x@ with @x = minimumNorm a b@ is the vector with minimal @Vector.norm2 x@ that satisfies @multiply a x == b@. Precondition: @a@ must have full rank and @height a <= width a@. -} minimumNorm :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Shape.C nrhs, Class.Floating a) => Full meas Extent.Small vert height width a -> Full meas vert horiz height nrhs a -> Full meas vert horiz width nrhs a minimumNorm = ArrMatrix.lift2 Plain.minimumNorm {- | If @(rank,x) = leastSquaresMinimumNormRCond rcond a b@ then @x@ is the vector with minimum @Vector.norm2 x@ that minimizes @Vector.norm2 (a #*| x `sub` b)@. Matrix @a@ can have any rank but you must specify the reciprocal condition of the rank-truncated matrix. -} leastSquaresMinimumNormRCond :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width, Shape.C nrhs, Class.Floating a) => RealOf a -> Full meas horiz vert height width a -> Full meas vert horiz height nrhs a -> (Int, Full meas vert horiz width nrhs a) leastSquaresMinimumNormRCond rcond a b = mapSnd ArrMatrix.lift0 $ Plain.leastSquaresMinimumNormRCond rcond (ArrMatrix.toVector a) (ArrMatrix.toVector b) pseudoInverseRCond :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => RealOf a -> Full meas vert horiz height width a -> (Int, Full meas horiz vert width height a) pseudoInverseRCond rcond = mapSnd (ArrMatrix.lift0 . Basic.recheck) . Plain.pseudoInverseRCond rcond . Basic.uncheck . ArrMatrix.toVector {- | @project b d x@ projects @x@ on the plane described by @B*x = d@. @b@ must have full rank. -} project :: (Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) => Wide height width a -> Vector height a -> Vector width a -> Vector width a project b d x = x |-| ArrMatrix.unliftColumn Layout.ColumnMajor (minimumNorm b) (Multiply.matrixVector b x |-| d) {- | @leastSquaresConstraint a c b d@ computes @x@ with minimal @|| c - A*x ||_2@ and constraint @B*x = d@. @b@ must be wide and @a===b@ must be tall and both matrices must have full rank. -} leastSquaresConstraint :: (Shape.C height, Eq height, Shape.C width, Eq width, Shape.C constraints, Eq constraints, Class.Floating a) => General height width a -> Vector height a -> Wide constraints width a -> Vector constraints a -> Vector width a leastSquaresConstraint a c b d = Plain.leastSquaresConstraint (ArrMatrix.toVector a) c (ArrMatrix.toVector b) d {- | @gaussMarkovLinearModel a b d@ computes @(x,y)@ with minimal @|| y ||_2@ and constraint @d = A*x + B*y@. @a@ must be tall and @a|||b@ must be wide and both matrices must have full rank. -} gaussMarkovLinearModel :: (Shape.C height, Eq height, Shape.C width, Eq width, Shape.C opt, Eq opt, Class.Floating a) => Tall height width a -> General height opt a -> Vector height a -> (Vector width a, Vector opt a) gaussMarkovLinearModel a b d = {- Fortran-LAPACK and OpenBLAS would leave Y uninitalized instead of setting Y to zeros. -} if Shape.size (Matrix.height a) == 0 then (Vector.zero (Matrix.width a), Vector.zero (Matrix.width b)) else Plain.gaussMarkovLinearModel (ArrMatrix.toVector a) (ArrMatrix.toVector b) d {- @(q,r) = householder a@ means that @q@ is unitary and @r@ is upper triangular and @a = multiply q r@. -} householder :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, ExtShape.Permutable height, Shape.C width, Class.Floating a) => Full meas vert horiz height width a -> (Square height a, Unpacked.UpperTrapezoid meas vert horiz height width a) householder a = let hh = HH.fromMatrix a in (HH.extractQ hh, HH.extractR hh) householderTall :: (Extent.Measure meas, Extent.C vert, Shape.C height, ExtShape.Permutable width, Class.Floating a) => Full meas vert Extent.Small height width a -> (Full meas vert Extent.Small height width a, Triangular.Upper width a) householderTall a = let hh = HH.fromMatrix a in (HH.tallExtractQ hh, HH.tallExtractR hh) determinant :: (Shape.C sh, Class.Floating a) => Square sh a -> a determinant = HH.determinant . HH.fromMatrix {-| Gramian determinant - works also for non-square matrices, but is sensitive to transposition. > determinantAbsolute a = sqrt (Herm.determinant (Herm.gramian a)) -} determinantAbsolute :: (Extent.Measure meas, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Full meas vert horiz height width a -> RealOf a determinantAbsolute = Plain.determinantAbsolute . ArrMatrix.toVector {- | For an m-by-n-matrix @a@ with m>=n this function computes an m-by-(m-n)-matrix @b@ such that @Matrix.multiply (adjoint b) a@ is a zero matrix. The function does not try to compensate a rank deficiency of @a@. That is, @a|||b@ has full rank if and only if @a@ has full rank. For full-rank matrices you might also call this @kernel@ or @nullspace@. -} complement :: (Shape.C height, Shape.C width, Class.Floating a) => Tall height width a -> Tall height ShapeInt a complement = ArrMatrix.lift1 Plain.complement {- | > affineFrameFromFiber a b == (c,d) Means: An affine subspace is given implicitly by {x : a#*|x == b}. Convert this into an explicit representation {c#*|y|+|d : y}. Matrix @a@ must have full rank, otherwise the explicit representation will miss dimensions and we cannot easily determine the origin @d@ as a minimum norm solution. The computation is like > c = complement $ adjoint a > d = minimumNorm a b but the QR decomposition of 'a' is computed only once. -} affineFrameFromFiber :: (Shape.C width, Eq width, Shape.C height, Eq height, Class.Floating a) => Wide height width a -> Vector height a -> (Tall width ShapeInt a, Vector width a) affineFrameFromFiber a b = let qr = HH.fromMatrix $ ArrMatrix.lift1 Basic.adjoint a in (ArrMatrix.lift0 $ Plain.extractComplement qr, ArrMatrix.unliftColumn Layout.ColumnMajor (HH.minimumNorm qr) b) {- | This conversion is somehow inverse to 'affineFrameFromFiber'. However, it is not precisely inverse in either direction. This is because both 'affineFrameFromFiber' and 'affineFiberFromFrame' accept non-orthogonal matrices but always return orthogonal ones. In @affineFiberFromFrame c d@, matrix @c@ should have full rank, otherwise the implicit representation will miss dimensions. -} affineFiberFromFrame :: (Shape.C width, Eq width, Shape.C height, Eq height, Class.Floating a) => Tall height width a -> Vector height a -> (Wide ShapeInt height a, Vector ShapeInt a) affineFiberFromFrame c d = let a = Basic.adjoint $ Plain.complement $ ArrMatrix.toVector c in (ArrMatrix.lift0 a, Basic.multiplyVector a d)