/* * SSE2 implementation of vector oprations (64bit double). * * Copyright (c) 2007-2010 Naoaki Okazaki * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* $Id: arithmetic_sse_double.h 65 2010-01-29 12:19:16Z naoaki $ */ #include #include #include #if 1400 <= _MSC_VER #include #endif/*1400 <= _MSC_VER*/ #if HAVE_EMMINTRIN_H #include #endif/*HAVE_EMMINTRIN_H*/ inline static void* vecalloc(size_t size) { #ifdef _MSC_VER void *memblock = _aligned_malloc(size, 16); #else void *memblock = memalign(16, size); #endif if (memblock != NULL) { memset(memblock, 0, size); } return memblock; } inline static void vecfree(void *memblock) { #ifdef _MSC_VER _aligned_free(memblock); #else free(memblock); #endif } #define fsigndiff(x, y) \ ((_mm_movemask_pd(_mm_set_pd(*(x), *(y))) + 1) & 0x002) #define vecset(x, c, n) \ { \ int i; \ __m128d XMM0 = _mm_set1_pd(c); \ for (i = 0;i < (n);i += 8) { \ _mm_store_pd((x)+i , XMM0); \ _mm_store_pd((x)+i+2, XMM0); \ _mm_store_pd((x)+i+4, XMM0); \ _mm_store_pd((x)+i+6, XMM0); \ } \ } #define veccpy(y, x, n) \ { \ int i; \ for (i = 0;i < (n);i += 8) { \ __m128d XMM0 = _mm_load_pd((x)+i ); \ __m128d XMM1 = _mm_load_pd((x)+i+2); \ __m128d XMM2 = _mm_load_pd((x)+i+4); \ __m128d XMM3 = _mm_load_pd((x)+i+6); \ _mm_store_pd((y)+i , XMM0); \ _mm_store_pd((y)+i+2, XMM1); \ _mm_store_pd((y)+i+4, XMM2); \ _mm_store_pd((y)+i+6, XMM3); \ } \ } #define vecncpy(y, x, n) \ { \ int i; \ for (i = 0;i < (n);i += 8) { \ __m128d XMM0 = _mm_setzero_pd(); \ __m128d XMM1 = _mm_setzero_pd(); \ __m128d XMM2 = _mm_setzero_pd(); \ __m128d XMM3 = _mm_setzero_pd(); \ __m128d XMM4 = _mm_load_pd((x)+i ); \ __m128d XMM5 = _mm_load_pd((x)+i+2); \ __m128d XMM6 = _mm_load_pd((x)+i+4); \ __m128d XMM7 = _mm_load_pd((x)+i+6); \ XMM0 = _mm_sub_pd(XMM0, XMM4); \ XMM1 = _mm_sub_pd(XMM1, XMM5); \ XMM2 = _mm_sub_pd(XMM2, XMM6); \ XMM3 = _mm_sub_pd(XMM3, XMM7); \ _mm_store_pd((y)+i , XMM0); \ _mm_store_pd((y)+i+2, XMM1); \ _mm_store_pd((y)+i+4, XMM2); \ _mm_store_pd((y)+i+6, XMM3); \ } \ } #define vecadd(y, x, c, n) \ { \ int i; \ __m128d XMM7 = _mm_set1_pd(c); \ for (i = 0;i < (n);i += 4) { \ __m128d XMM0 = _mm_load_pd((x)+i ); \ __m128d XMM1 = _mm_load_pd((x)+i+2); \ __m128d XMM2 = _mm_load_pd((y)+i ); \ __m128d XMM3 = _mm_load_pd((y)+i+2); \ XMM0 = _mm_mul_pd(XMM0, XMM7); \ XMM1 = _mm_mul_pd(XMM1, XMM7); \ XMM2 = _mm_add_pd(XMM2, XMM0); \ XMM3 = _mm_add_pd(XMM3, XMM1); \ _mm_store_pd((y)+i , XMM2); \ _mm_store_pd((y)+i+2, XMM3); \ } \ } #define vecdiff(z, x, y, n) \ { \ int i; \ for (i = 0;i < (n);i += 8) { \ __m128d XMM0 = _mm_load_pd((x)+i ); \ __m128d XMM1 = _mm_load_pd((x)+i+2); \ __m128d XMM2 = _mm_load_pd((x)+i+4); \ __m128d XMM3 = _mm_load_pd((x)+i+6); \ __m128d XMM4 = _mm_load_pd((y)+i ); \ __m128d XMM5 = _mm_load_pd((y)+i+2); \ __m128d XMM6 = _mm_load_pd((y)+i+4); \ __m128d XMM7 = _mm_load_pd((y)+i+6); \ XMM0 = _mm_sub_pd(XMM0, XMM4); \ XMM1 = _mm_sub_pd(XMM1, XMM5); \ XMM2 = _mm_sub_pd(XMM2, XMM6); \ XMM3 = _mm_sub_pd(XMM3, XMM7); \ _mm_store_pd((z)+i , XMM0); \ _mm_store_pd((z)+i+2, XMM1); \ _mm_store_pd((z)+i+4, XMM2); \ _mm_store_pd((z)+i+6, XMM3); \ } \ } #define vecscale(y, c, n) \ { \ int i; \ __m128d XMM7 = _mm_set1_pd(c); \ for (i = 0;i < (n);i += 4) { \ __m128d XMM0 = _mm_load_pd((y)+i ); \ __m128d XMM1 = _mm_load_pd((y)+i+2); \ XMM0 = _mm_mul_pd(XMM0, XMM7); \ XMM1 = _mm_mul_pd(XMM1, XMM7); \ _mm_store_pd((y)+i , XMM0); \ _mm_store_pd((y)+i+2, XMM1); \ } \ } #define vecmul(y, x, n) \ { \ int i; \ for (i = 0;i < (n);i += 8) { \ __m128d XMM0 = _mm_load_pd((x)+i ); \ __m128d XMM1 = _mm_load_pd((x)+i+2); \ __m128d XMM2 = _mm_load_pd((x)+i+4); \ __m128d XMM3 = _mm_load_pd((x)+i+6); \ __m128d XMM4 = _mm_load_pd((y)+i ); \ __m128d XMM5 = _mm_load_pd((y)+i+2); \ __m128d XMM6 = _mm_load_pd((y)+i+4); \ __m128d XMM7 = _mm_load_pd((y)+i+6); \ XMM4 = _mm_mul_pd(XMM4, XMM0); \ XMM5 = _mm_mul_pd(XMM5, XMM1); \ XMM6 = _mm_mul_pd(XMM6, XMM2); \ XMM7 = _mm_mul_pd(XMM7, XMM3); \ _mm_store_pd((y)+i , XMM4); \ _mm_store_pd((y)+i+2, XMM5); \ _mm_store_pd((y)+i+4, XMM6); \ _mm_store_pd((y)+i+6, XMM7); \ } \ } #if 3 <= __SSE__ /* Horizontal add with haddps SSE3 instruction. The work register (rw) is unused. */ #define __horizontal_sum(r, rw) \ r = _mm_hadd_ps(r, r); \ r = _mm_hadd_ps(r, r); #else /* Horizontal add with SSE instruction. The work register (rw) is used. */ #define __horizontal_sum(r, rw) \ rw = r; \ r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(1, 0, 3, 2)); \ r = _mm_add_ps(r, rw); \ rw = r; \ r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(2, 3, 0, 1)); \ r = _mm_add_ps(r, rw); #endif #define vecdot(s, x, y, n) \ { \ int i; \ __m128d XMM0 = _mm_setzero_pd(); \ __m128d XMM1 = _mm_setzero_pd(); \ __m128d XMM2, XMM3, XMM4, XMM5; \ for (i = 0;i < (n);i += 4) { \ XMM2 = _mm_load_pd((x)+i ); \ XMM3 = _mm_load_pd((x)+i+2); \ XMM4 = _mm_load_pd((y)+i ); \ XMM5 = _mm_load_pd((y)+i+2); \ XMM2 = _mm_mul_pd(XMM2, XMM4); \ XMM3 = _mm_mul_pd(XMM3, XMM5); \ XMM0 = _mm_add_pd(XMM0, XMM2); \ XMM1 = _mm_add_pd(XMM1, XMM3); \ } \ XMM0 = _mm_add_pd(XMM0, XMM1); \ XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \ XMM0 = _mm_add_pd(XMM0, XMM1); \ _mm_store_sd((s), XMM0); \ } #define vec2norm(s, x, n) \ { \ int i; \ __m128d XMM0 = _mm_setzero_pd(); \ __m128d XMM1 = _mm_setzero_pd(); \ __m128d XMM2, XMM3, XMM4, XMM5; \ for (i = 0;i < (n);i += 4) { \ XMM2 = _mm_load_pd((x)+i ); \ XMM3 = _mm_load_pd((x)+i+2); \ XMM4 = XMM2; \ XMM5 = XMM3; \ XMM2 = _mm_mul_pd(XMM2, XMM4); \ XMM3 = _mm_mul_pd(XMM3, XMM5); \ XMM0 = _mm_add_pd(XMM0, XMM2); \ XMM1 = _mm_add_pd(XMM1, XMM3); \ } \ XMM0 = _mm_add_pd(XMM0, XMM1); \ XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \ XMM0 = _mm_add_pd(XMM0, XMM1); \ XMM0 = _mm_sqrt_pd(XMM0); \ _mm_store_sd((s), XMM0); \ } #define vec2norminv(s, x, n) \ { \ int i; \ __m128d XMM0 = _mm_setzero_pd(); \ __m128d XMM1 = _mm_setzero_pd(); \ __m128d XMM2, XMM3, XMM4, XMM5; \ for (i = 0;i < (n);i += 4) { \ XMM2 = _mm_load_pd((x)+i ); \ XMM3 = _mm_load_pd((x)+i+2); \ XMM4 = XMM2; \ XMM5 = XMM3; \ XMM2 = _mm_mul_pd(XMM2, XMM4); \ XMM3 = _mm_mul_pd(XMM3, XMM5); \ XMM0 = _mm_add_pd(XMM0, XMM2); \ XMM1 = _mm_add_pd(XMM1, XMM3); \ } \ XMM2 = _mm_set1_pd(1.0); \ XMM0 = _mm_add_pd(XMM0, XMM1); \ XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \ XMM0 = _mm_add_pd(XMM0, XMM1); \ XMM0 = _mm_sqrt_pd(XMM0); \ XMM2 = _mm_div_pd(XMM2, XMM0); \ _mm_store_sd((s), XMM2); \ }