
Leksah: An Integrated Development

Environment for Haskell

Jürgen Nicklisch-Franken

February 3, 2008

Contents

1 Introduction 2
1.1 Further Information . 2
1.2 Release Notes . 2

1.2.1 Version 0.1 . 2

2 Installing Leksah 2

3 Quick start 3

4 Con�guration 4

5 Meta information and Navigation 5
5.1 The Modules Pane . 5
5.2 The Info Pane . 6
5.3 The Collector . 7

6 The View Frame 7
6.1 Special Keystrokes . 7
6.2 Menus and Toolbars . 8
6.3 Window Layout . 8

7 The Editor 9
7.1 Source Candy . 9

8 Packages (Cabal) 9
8.1 Building . 9

9 Planed Developments 10
9.1 Plans for Version 0.x . 10
9.2 Version x.y . 11

1

9.3 Any version later 1.0 . 11

License

Leksah has been put under the GNU GENERAL PUBLIC LICENSE Version 2. The full
license text can be found in the �le data/gpl.txt in the distribution.

1 Introduction

Leksah is an IDE (Integrated Development Environment) for the programming language
Haskell. It is written in Haskell. Leksah is intended as a practical tool to support the
Haskell development process.
Leksah uses GTK+ as GUI Toolkit with the gtk2hs binding. It is platform independent

and should run on any platform where GTK+, gtk2hs and ghc can be installed. (It is
currently been tested on Windows and Linux. Please tell us if it runs on the Mac). It
uses the Cabal package management and build system for Package Management. It will
use Haddock for source code documentation. It currently only supports the Glasgow
Haskell Compiler (ghc). It could possibly be integrated with other compilers, but their
are no plans to do this.

1.1 Further Information

The source code for Leksah is hosted under code.haskell.org/leksah. For the Pro-
gramming language Haskell go to www.haskell.org. For information about GTK+ go to
www.gtk.org. For information about Ghc go to www.haskell.org/ghc. You can contact
the developer at jnf AT arcor.de.

1.2 Release Notes

1.2.1 Version 0.1

This is a pre-release of Leksah. The editor for Cabal Files is not yet ready, so we propose
not to use it yet.

2 Installing Leksah

1. Install GHC 6.8.x On Linux the best choice is currently 6.8.2 but 6.8.1 should work.
On Windows use 6.8.1., until a gtk2hs installer for 6.8.2 is available. It is a good
idea to install everything with sources, specially when using Leksah.

2. Install GTK+ and gtk2hs in a version compatible with the version of GHC you
just installed. This should be easy on Linux and it is easy on Windows, if you use
an installer for Windows (http://haskell.org/ght2hs). At the time of writing it

2

is the 0.9.12.1 version which is compatible with 6.8.1 on Windows. The Packages
you need are gtk >=0.9.12, glib >=0.9.12 and sourceview >=0.9.12.

3. Download, con�gure, build and install the binary package (version >= 0.4.1) which
is available from HackageDB hackage.haskell.org with typical Cabal procedure.
(Go to the root folder of the package. Then do runhaskell con�gure, runhaskell
build, runhaskell install. The other packages needed should have been installed
with GHC anyway. (I'm nut sure if GHC-extralibs is needed).

4. Download, and build Leksah with typical Cabal procedure.
If you want to run Leksah without installing, which is interesting for development,
you have to copy the /data folder with its contents to a place where Leksah will
�nd it. This place depends on the target platform and will be chosen from Cabal.
On my Windows machine it will work to mkdir dist/build/leksah-0.1, cp -R data
dist/build/leksah-0.1/, on Linux it is a sudo mkdir /usr/share/leksah-0.1, cp -R
data usr/share/leksah-0.1/.

3 Quick start

1. When you start Leksah for the �rst time you have to specify folders, under which
Haskell source code for installed packages can be found. This can be any folder
above the source directories. So �gure out what this will be on your system.

2. Start Leksah. Enter the folder/folders in the �rst start dialog. You have to click
the Add Button after selecting the folder.

3. Now Leksah collects information about all installed packages on your system. So it
may take a long time, but be patient, at further starts it will only collect information
for fresh installed packages. Their will eventually be a bunch of errors and warnings
on your command line, but don't worry, it should only mean that Leksah has not
succeeded to extract the source locations and comments in a certain �le.

4. Their are command line options for rebuilding the collected meta-data at any time
you want or need it.

5. After starting up, Leksah will open its Main window in a standard con�guration.

6. The best way to start up will be to open an existing project. So select Pack-
age/OpenPackage from the menu and open a Cabal �le of some project.

3

4 Con�guration

1. Leksah stores its con�guration in a directory called ~/.leksah under your home
folder.

2. The �le Default.prefs stores the general Preferences. These Preferences can be
edited in a dialog by choosing Help/Edit Prefs from the menu. If this �le is not
available the Default.prefs �le from the installed /data folder will be used.

3. The Current.session �le stores the state of the last session, so that Leksah will
recover the state from the last session. If this �le is not available it will be taken
from the installed /data folder.

4. The source_packages.txt �le stores source locations for installed packages. It can
be rebuild by calling Leksah with the -s or �Sources argument . Do this after you
moved your source or added sources for previous installed packages without sources.

5. The folder will contain one or many other folders (e.g. ghc-6.8.1). In this folder
collected information about installed packages for a compiler version is stored. (e.g.
binary-0.4.1.pack). These �les are in binary format. If you start Leksah with the
-r or �Rebuild argument, it cleans all .pack �les and rebuilds everything.

6. Files for Keymaps and SourceCandy may be stored here and will be found according
to the name selected in the Preferences Dialog. Leksah �rst searches in this folder
and after this in the /data folder.

4

5 Meta information and Navigation

5.1 The Modules Pane

1. In the modules pane you get information about modules and their interface. The
displayed information depends on the open package. If no package is open only the
world scope has information. If a package is open its name is displayed in the third
subdivision from the left of the status bar.

2. We assume there is an open package. You can then select the scope of the displayed
information with the radio button on top of the modules pane. The Local scope
shows only modules which are part of the project. The Package scope shows all
modules of the package and all packages the current package depends on. The
World scope shows all modules of installed packages of the system. (You can get
this list with ghc-pkg list).

3. If the Blacklist toggle button is selected, the packages in the blacklist are not
displayed. This doesn't mean that the information of this packages is not loaded
or otherwise accessible. (I invented the blacklist mainly for the ghc package, which
is very big and does not use name-spaces and so pollutes the list). The Blacklist
can be edited in the preferences dialog.

4. If you select a module in the modules list, its interface is displayed in the interface
list on the right. You can search for a module or package by selecting the modules
list and typing some text. With the up and down arrows you �nd the next/previous
matching item. With the escape key or by selecting any other GUI element you
leave the search mode.

5

5. If there is a little symbol with an arrow in front of a module, Leksah has found a
source �le for this module. You can open this source �le, or bring it to the front if
it is already open with a double click on the module. (the same can be done with
selecting Edit from the context menu.

6. By selecting an element in the Interface List the so called Info Pane is shown with
additional information.

7. If there is a little symbol with an arrow in front of a module, Leksah has found
a source location for this element. You can open this source �le, or bring it to
the front and display the source for the selected location with a double click on
the element. (the same can be done with selecting Edit from the context menu.
(Currently their is a bug, that the location is not selected for a fresh opened �le.
In this case repeat the double click).

5.2 The Info Pane

1. The Info Pane shows information about an interface element, which may be a
function, a class, a data de�nition It shows the identi�er, which sort it is of,
its type and if possible a comment.

2. If you select an identi�er in an editor, and their is information about this identi�er
available in the package scope, it is automatically displayed in the info pane. The
easiest way to do this is to double click on an identi�er. For special identi�ers (e.g.
a_) select the word and release the button, actually the search is initiated by the
release of the button.

3. Remember that only statically collected information is available this way. So the
meta data contains only information about items which are exported by some
module. (Currently there is as well a bug with reexported items).

6

4. There may be many de�nitions of an identi�er in the scope, in which case you see
something like (3/1) on the right side of the pane and the Next button gets active
so that you can navigate to the next/previous information.

5. If there is a source locating attached you can go to the de�nition by clicking the
Source button.

6. If the de�nition can be found in the scope selected in the modules pane, you can
select the module and the interface element in the modules pane by clicking the
Selection button.

7. With the Uses button a pane opens which displays the modules which imports this
element. (This feature is not ready yet).

8. The Docu button will bring you to the haddock Documentation when it is available
(and the implementation of this is ready).

9. (I plan to add a search feature here in the near future).

5.3 The Collector

6 The View Frame

6.1 Special Keystrokes

1. You can con�gure the keystrokes by providing a .keymap �le, which can either be
in the .leksah folder or in the data folder. The name of the key map �le to be used
can be speci�ed in the Preferences dialog. A line in the .keymap �le looks like:

<ctrl>o -> FileOpen "Opens an existing file"

2. Allowed Modi�ers are <shift> <ctrl> <alt> <apple> <compose>. <apple> is
the Windows key on PC keyboards. <compose> is often labeled Alt Gr. It is as
well possible to specify Emacs like keystrokes in the following way:

<ctrl>x/<ctrl>f -> FileOpen "Opens an existing file"

3. The comment on the right will be displayed as tool tips on top of toolbar buttons,
if such exist for this action.

4. The name of the action can be any one of the ActionDescr's given in the action
function in the Module IDE.Menu. (All IDEAction's can be added to this actions,
which may not be the current situation).

5. Whenever you call an action, by a menu, a toolbar or a keystroke, the keystroke
with its associated ActionsString is displayed in the Status bar in the leftmost
compartment.

7

6. Every keystroke shall obviously only be associated with one action, and more im-
portant every action may only have one associated keystroke.

7. Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This
is because simple keystrokes are delegated to the standard gtk mechanism, while
other keystrokes are handled by Leksah.

6.2 Menus and Toolbars

1. Menus and Toolbars can be customized by editing the �le Default. menu. The
format is a gtk+ xml format. Leksah requires the de�nition of one menu bar and
two toolbars in this order. The names of the actions can be all in the ActionDescr's
given in the action function in the Module IDE.Menu.

6.3 Window Layout

1. In Leksah there may be an active pane. The name of this pane is displayed in
the second compartment from the left side in the status bar. Some actions like
moving, splitting, closing panes or �nding or replacing items in a text bu�er act on
the current pane, so check the display in the status bar to see if the right pane is
active. (This is specially important in the current state of development). As well
text bu�ers by default open up on top of the current pane.

2. The layout of the Leksah window contains areas which contain notebooks which
contain so called panes. The division between the two areas is adjustable by the
user by dragging a handle. The areas form a binary tree, although this tree is not
visible to the user. Every area can be split horizontally or vertically. Panes can
collapsed, the e�ect of collapsing depends on the position of the pane in the binary
layout tree.

3. Active panes can be moved between areas in the window. The tabs of notebooks
can be positioned at any of the four directions, or the tabs can be switched o�.
Note that holding the mouse over the tabs and selecting the right button brings up
a menu of all panes in this area, so that you can for example quickly select one of
many open source bu�ers.

4. There are certain panes which can't be activated and thus can't be moved like the
Toolbar, the Find and the Replace pane.

5. The layout will be saved when you leave Leksah and will be restored when you
restart it. Currently there is no way to load di�erent layouts, but this feature
would be easy to implement.

8

7 The Editor

7.1 Source Candy

1. Leksah reads and writes pure ASCII Code �les, but can nevertheless show you
nice symbols like λ.This is done by replacing certain character combinations by a
Unicode character when loading a �le or when typing, and replace it back when
the �le is saved.

2. The use of the candy feature can be switched on and o� in the menu and the
preferences dialog.

3. This feature can be con�gured by editing a .candy �le in the .leksah folder or in
the data folder. The name of the candy �le to be used can be speci�ed in the
Preferences dialog.

4. Lines in the *.candy �le looks like

"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"->" 0x2192 Trimming --RIGHTWARDS ARROW

The �rst entry in a line are the characters to replace. The second entry is the
hexadecimal representation of the Unicode character to replace with. The third
entry is an optional argument, which speci�es, that the replacement should add
and remove blanks to keep the number of characters. This is important because of
the layout feature of Haskell. The last entry in the line is an optional comment,
which is by convention the name of the Unicode character

WARNING: Using the source candy feature can give you problems with
layout, because the alignment of characters with and without source candy
may di�er.

8 Packages (Cabal)

8.1 Building

1. The most frequently used functionality with packages is to make a build, which is
possible after a successful con�gure. When you start a build, the log window will
be opened or displayed. In the Log window you can see the standard output the
Cabal build produces, which comes from the Ghc compiler.

2. A build may produce errors and warnings. If this is the case the focus is set to
the �rst error/warning in the Log and the corresponding source �le will open with

9

the focus at the point where the compiler reports the error. You can navigate to
the next or previous errors by using the menu, the toolbar or a keystroke. Another
possibility is to click on the error in the Log pane, then the corresponding source
bu�er at the error place will be shown.

3. After a successful build, that is a build, which didn't produce any errors, the
metainfo for the active package will be rebuild.

4. In the statusbar the state regarding to the build is displayed in the third compart-
ment from the right. It reads Building as long as a build is on the way and displays
the numbers of errors and warnings after a build.

9 Planed Developments

9.1 Plans for Version 0.x

• Working Cabal Editor with Con�gurations (etc..)

• Completion

• Search

• Class Hierarchy pane

• Import helper

• (Maybe) Editor: Highlighting according to �le type

• (Maybe) Properties of single editor (no highlight, no candy,...)

• Haddock integration

• Internal: Generic record editor

• Using �nd in sources without location

• Build only one time - Cancel build

• Source collector only one time - Make it run in background

• Preferences embed den

• Uses Pane (Currently called Callers)

• Hints for developers

10

9.2 Version x.y

• Debugging

• Versioning support (Darcs)

• Test support (Quick check)

• Coverage (HPC)

• Pro�ling (Ghc Pro�ler)

• Refactoring (HaRe)

• FAD (Functional Analysis and Design)

9.3 Any version later 1.0

• Plugins

Postscript

The development of an IDE is a big issue, so Leksah is intended to become a community
project and everyone is invited to contribute. If you are a user or just test Leksah, we
would appreciate to here from you and problems and wishes for Leksah.

11

