
Leksah: An Integrated Development

Environment for Haskell

Jürgen Nicklisch-Franken

January 19, 2009

Contents

1 Introduction 4
1.1 Further Information . 4
1.2 Release Notes . 4

1.2.1 Version 0.4 Beta Release February 2009 4
1.2.2 Version 0.1 Alpha Release February 2008 4

2 Installing Leksah 4

3 First start of Leksah 5

4 The Editor 8
4.1 Search and Replace . 8
4.2 Source Candy . 9
4.3 Editor Preferences . 10

5 Packages (Cabal) 11
5.1 Package Editor . 11
5.2 Building . 12
5.3 Import Helper . 13
5.4 Flags and other operations . 14

6 Navigation and Metadata 15
6.1 The Modules Pane . 15
6.2 The Info Pane . 17
6.3 The Search Pane . 18
6.4 The Usage Pane . 19
6.5 Metadata collection . 19

1

7 Con�guration 19
7.1 Window Layout . 20
7.2 Session handling . 21
7.3 Shortcuts . 22
7.4 Con�guration �les . 22
7.5 Menus and Toolbars . 23

8 The Future 23
8.1 Version 0.6 . 23
8.2 Version 1.0 . 23
8.3 Version x . 23

9 Appendix 24
9.1 Command line arguments . 24
9.2 The Candy �le . 24
9.3 The Keymap �le . 25
9.4 Preferences �le . 26
9.5 Session File . 27

List of Figures

1 FirstStart dialog . 6
2 After start . 7
3 Leksah with open project . 7
4 File menu . 8
5 Edit menu . 8
6 Find bar . 9
7 Source candy example . 9
8 Editor Preferences . 10
9 Package Menu . 11
10 PackageEditor 1 . 12
11 Import dialog . 13
12 Package Flags . 14
13 Modules pane . 16
14 Construct module dialog . 17
15 Info pane . 17
16 Search pane . 18
17 Usage Pane . 19
18 File menu . 19
19 Metadata Preferences . 20
20 View menu . 20
21 GUI Preferences . 21
22 Session menu . 21

2

License

Leksah has been put under the GNU GENERAL PUBLIC LICENSE Version 2. The full
license text can be found in the �le data/gpl.txt in the distribution.

3

1 Introduction

Leksah is an IDE (Integrated Development Environment) for the programming language
Haskell. It is written in Haskell. Leksah is intended as a practical tool to support the
Haskell development process.
Leksah uses GTK+ as GUI Toolkit with the gtk2hs binding. It is platform independent

and should run on any platform where GTK+, gtk2hs and GHC can be installed. It uses
the Cabal package management and build system for Package Management. It needs the
Glasgow Haskell Compiler for full functionality (GHC).
This document is a reference to the functionality you can �nd in Leksah, it is not

intended to be a tutorial. Since Leksah is in the state of development the information
may be incomplete or even wrong.

1.1 Further Information

The home page for Leksah is http://leksah.org/.The source code for Leksah is hosted
under code.haskell.org/leksah. For the Programming language Haskell go to www.

haskell.org. For information about GTK+ go to www.gtk.org. You can contact the
developer at info (at) leksah.org.

1.2 Release Notes

1.2.1 Version 0.4 Beta Release February 2009

The 0.4 Release will become the �rst beta when it is stable enough. It should be useable
for practical work for the ones that wants to engage with it.
It depends on Ghc ≥6.10.1 and gtk2hs ≥ 0.9.14.
The class brower and the history features are not quite ready, so we propose not to

use it yet.

1.2.2 Version 0.1 Alpha Release February 2008

This is a pre-release of Leksah. The editor for Cabal Files is not yet ready, so we propose
not to use it yet.

2 Installing Leksah

1. You need an installed GHC (Glasgow Haskell Compiler). For information about
Ghc go to www.haskell.org/ghc. It is a good idea to install everything with
sources, specially when using Leksah!

2. Install GTK+ and gtk2hs in a version compatible with the version of GHC you
just installed. This should be easy on Linux and it is easy on Windows, if you have
a �tting installer (http://haskell.org/ght2hs). The packages from gtk2hs you
need are gtk, glib and gtksourceview2.

4

http://leksah.org/
code.haskell.org/leksah
www.haskell.org
www.haskell.org
www.gtk.org
www.haskell.org/ghc
http://haskell.org/ght2hs

3. Either: Download, and build Leksah with cabal install leksah. (TODO: I'm not
shure if this will be possible, because gtk2hs is not cabalized).
Or: Download, con�gure, build and install the prerequisite packages: binary
≥0.4.1, bytestring ≥0.9.0.1, utf8-string ≥0.3.1.1, regex-posix ≥0.39.1 which is avail-
able from HackageDB hackage.haskell.org with typical Cabal procedure. (Go
to the root folder of the package. Then do runhaskell con�gure, runhaskell build,
sudo runhaskell install. The other packages needed should have been installed with
GHC anyway. (I'm nut sure if GHC-extralibs is needed). Then get the leksah
package via hackage and do the same.

Inside: Leksah installs a an executable in a folder that should be in the search path, and
a couple of data �les in a data folder. These places are choosen by the Cabal package
management system and depend on the target platform and the way you install. On Linux
the data folder may be /usr/share/leksah-0.4/data. For storing preferences, sessions and
collected metadata Leksah constructs a .leksah directory in your home folder. If you
want to change or add con�guration �les for keymaps, source candy, etc, you can put
them in this place.
If you have any trouble installing Cabal please check with the developers to �nd out

if it is a Leksah problem.
In the future we would like to have packages/installers for Linux distributions, Windows

and Mac. Please contact us if you can o�er help.

3 First start of Leksah

1. When you start Leksah for the �rst time, the �rst start dialog appears (Figure 1)
You have to specify folders, under which Haskell source code for installed packages
can be found. This can be any folder above the source directories. So �gure out
what this will be on your system. You have to click the Add Button after selecting
the folder.

Later you can change this settings in the preferences pane in Leksah and you can
rebuild the metadata at any time.

If you want to see the �rst start dialog again, delete or rename the .leksah folder in
your home folder.

2. Now Leksah collects information about all installed packages on your system. So
it may take a long time, but be patient, at further starts it will only collect infor-
mation for fresh installed packages. Their will eventually be a bunch of errors and
warnings on your command line, but don't worry, it only means that Leksah has
not succeeded to extract the source locations and comments in a certain �le.

5

hackage.haskell.org

Figure 1: FirstStart dialog

3. After starting up, Leksah will open its Main window in a standard con�guration
(Figure 2).

4. The best way to start up will be to open an existing project. So select Pack-
age/OpenPackage from the menu and open a Cabal �le of some project. Alterna-
tively you can construct a new project selecting the Package/NewPackage menu
option. A typical Leksah window may then look like Figure 3.

6

Figure 2: After start

Figure 3: Leksah with open project

7

4 The Editor

Figure 4: File menu

The central functionality needed for development is to edit
Haskell source �les. Leksah uses the GtkSourceView2 wid-
get for this. It provides syntax highlighting, undo/redo and
other features. In the �le menu (Figure 4) you have the
usual functionality to open, save, close and revert �les. You
can as well close all �les, and all �les which are not stored
in or below the top folder of the current project (this is the
folder where the .cabal �le resides). Leksah does not store
backup �les. Leksah detects if a �le has changed which is
currently edited and queries the user if a reload is desired.
When you open a �le which is already open, leksah queries
if you want to make the currently open �le active, instead
of opening it a second time (Leksah currently does not support multiple views on a �le,
but if you open a �le a second time, its like editing the �le two times, which makes little
sense).

Figure 5: Edit menu

When a �le has changed compared to the stored version,
the �le name is shown in red in the notebook tab. If you
want to change to a di�erent bu�er you can open a list of all
open bu�ers by pressing the right mouse button, while the
mouse is over a notebook tab. You can then select an entry
in this list to select this �le.
On the right side in the status bar you can see the line

and column, in which the cursor is and if overwrite mode
is switched on. In the second compartment from the left
you can see the currently active pane, which is helpful if you
want to be shure that you have selected the right pane for
some operation.
In the edit menu (Figure 5) you �nd the usual operations:

undo, redo, cut, copy, paste and select all. In addition you
can comment and uncomment selected lines in a per line
style (�). Furthermore you can align some special charac-
ters (=,<-,->,::,|) in selected lines. The characters are never
moved to the left, but the operation is very simple and takes
the rightmost position of the special character in all lines,
and inserts spaces before the �rst occurence of this special
characters in the other lines for alignment.

4.1 Search and Replace

Leksah supports basic functionality for searching in text �les. When you select Edit/Find
from the menu the �nd bar will open (Figure 6) and you can type in a text string. Hitting
the up and down arrow will bring you to the next/previous occurence of the search string.

8

Figure 6: Find bar

Hitting Enter will close the �nd bar and place the cursor at the currently selected search
position. Hitting Escape will close the �nd bar. You have options for case sensitive
search, for searching only whole worlds and for wrapping around, which means that the
search will start at the beginning/end of the �le, when the end/beginning is reached. If
their is no occurence of the search string the entry turns red.
To replace a text enter the new text in the replace entry and select replace or replace

all.
The �nd bar supports as well to jump to a certain line number in the current text

bu�er.

4.2 Source Candy

Figure 7: Source candy example

When using Source Candy, Leksah reads and writes pure ASCII Code �les, but can
nevertheless show you nice symbols like λ.This is done by replacing certain character
combinations by a Unicode character when loading a �le or when typing, and replace it
back when the �le is saved.
The use of the candy feature can be switched on and o� in the menu and the preferences

dialog.
This feature can be con�gured by editing a .candy �le in the .leksah folder or in the

data folder. The name of the candy �le to be used can be speci�ed in the Preferences
dialog.
Lines in the *.candy �le looks like:
"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"->" 0x2192 Trimming --RIGHTWARDS ARROW
The �rst entry in a line are the characters to replace. The second entry is the hex-

adecimal representation of the Unicode character to replace with. The third entry is an
optional argument, which speci�es, that the replacement should add and remove blanks
to keep the number of characters. This is important because of the layout feature of
Haskell. The last entry in the line is an optional comment, which is by convention the
name of the Unicode character.
Using the source candy feature can give you problems with layout, because the align-

ment of characters with and without source candy may di�er!

9

Leksah reads and writes �les encoded in UTF-8. So you can edit Unicode Haskell
source �les. When you want to do this, switch of source candy, because otherwise unicode
characters may be converted to ASCII when saving the �le.

4.3 Editor Preferences

Figure 8: Editor Preferences

When selecting Edit/Edit Prefs the preferences pane opens, which has a selection called
Editor (Figure 8), were you can edit preferences for the editor. Some of the options you
�nd here refer to visual elements, like the display of line numbers, the font used, the
display of a right margin and the use of a style �le for colors and syntax highlighting.
You can set here the Tab size you want. Leksah always stores tabs as spaces to ease

the use of layout. (As you may know, otherwise only a tab size of 8 can be digested by
haskell compilers).
Leksah has an option for storing the �les with standard unix line ends even on Win-

dows, and not using the infamous cr/lf combination. This is e.g. useful if Windows and
other users commit to the same repository.
Leksah o�ers as well to remove trailing blanks in lines, which you may choose as

default, because blanks at the end of lines make no sense in source code.

10

5 Packages (Cabal)

Figure 9: Package Menu

A central concept for any IDE is a package, which is a project
for development of some library or exectuable you may work
on. One instance of Leksah can only open one package at
a time. Leksah can store con�gurations for packages seper-
ately (and does this by default), so that you can switch be-
tween packages and get exactly back to where you stopped
when opening a di�erent package.
Leksah uses Cabal for package management, and opening

a package is done by opening a cabal �le. So when you select
Package / Open Package from the menu, select the cabal �le
of the desired package. Leksah shows the current package in
the third compartment in the status bar!
To start with a new package select Package / NewPackage

from the menu. Then you have to select a folder for the
project, which you may give the same name you will give
to your package. Then the package editor will open up, in
which you have to supply information about your package.

5.1 Package Editor

The package editor (Figure 10) is an editor for cabal �les.
Since cabal �les o�er complex options the editor is quite
complex. For a complete description of all options see the
Cabal User's Guide. The package editor does not support
the cabal con�gurations feature. If you need cabal con�gu-
rations, you need to edit the cabal �les as a text �le. Since Leksah uses standard cabal
�les with no modi�cations this is no problem, and you can use Leksah with such packages
with no problem, just the package editor will not work for you.
The minimum requirements for any package is to give a name and a version. Then

you will have to enter dependencies on other packages in the Dependencies part of the
editor. This will be at least the base package.
Finally you have to specify an executable or a library that should be the result of your

coding e�ort. You do this in the Executables and Library part of the editor. Cabal gives
the possibility to build more then one executable from one package and to build a library
and executables from one package.
For an executable you enter a name, the source �le with the main function and a build

info. For a library you enter the exposed modules and a build info.
With build information you give additional information, e.g:

• where the sources can be found (relative to the root folder of the project, which is
the one with the cabal �le).

• what additional non-exposed or non main modules your project includes

11

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Figure 10: PackageEditor 1

• compiler �ags

• used language extensions in addition to Haskell 98 (These can also be speci�ed in
the source �les with pragmas)

• and many more ...

Because more then one executable and a library can be build from one package, it is
possible to have cabal �les with more then one build info. The package editor deals with
this by the buttons Add / Remove Build Info. Every build info gets an index number,
and for executables and a library you specify the index of the build info. (However, the
usual case is to start with one build info).

5.2 Building

The most frequently used functionality with packages is to make a build, which is possible
after a successful con�gure. When you start a build, the log window will be opened or
displayed. In the Log window you can see the standard output the Cabal build produces,
which comes from the Ghc compiler.
A build may produce errors and warnings. If this is the case the focus is set to the �rst

error/warning in the Log and the corresponding source �le will open with the focus at
the point where the compiler reports the error. You can navigate to the next or previous

12

Figure 11: Import dialog

errors by clicking on the error or warning in the log window, or by using the menu, the
toolbar or a keystroke.
In the statusbar the state regarding to the build is displayed in the third compartment

from the right. It reads Building as long as a build is on the way and displays the
numbers of errors and warnings after a build.

Currently their is no way to cancel a build in progress, but this is on the list.

5.3 Import Helper

A frequent and annoying error is the Not in scope compiler error. In the majority of cases
it means that an import statement is missing. If this is the case you can choose Add
import from the context menu in the log pane. Leksah will then add an import statement
to the import list. If their is more then one module the identi�er can be imported from, a
dialog will appear which queries you about the module you want to import from (Figure
11).
Leksah then adds a line or an entry to the import list of the a�ected module with the

compiler error and adds a line in the Log window. Leksah imports individual elements,
but imports all elements of a class or data structure if one of them is needed. The import
helper can work with quali�ed identi�ers and should add a currect import statement.
You can as well select add all imports from the context menu, in which case all Not in
scope errors will be treated at once. After providing the imports you have to save the
�le and recompile.
The import helper just looks in imported packages, so if you miss a package import

it will not be treated automatically. If you �nd that an identi�er is not exported by
another module and you add it their and then run the import helper again, it will still
not �nd the identi�er, because the meta information theimport mechanism depends on
was not updated. So chosse Metadata / Update project and choose add import again
and it should work.

13

Figure 12: Package Flags

This is a fresh feature which may still have some problems, please report them so
that we can work on them.

Obviously some not in scope errors have other reasons, e.g. you have misspelled some
identi�er, which can't be resolved by adding imports.

5.4 Flags and other operations

As you can see in the package menu (Figure 9) you can do more operations with packages,
which are mostly provided by the Cabal system. You can clean, con�gure, build and if
you have build an executable run your program. And other operations like building a
source distribution and building haddock documentation. For more details about these
operations (as said before) consult the Cabal User's Guide. Since many of these oper-
ations can take additional �ags you can enter these by selecting Package / Edit �ags.
Then the Flags pane opens up (Figure 12). For example haddock documentation for the
leksah source will not be build, because it is not a library unless you pass the �executable
�ag. The �ags are stored in a �le called IDE.�ags in the root folder of the project.

14

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

6 Navigation and Metadata

Leksah collects data about all installed Haskell packages on your system. It does this
by reading the Haskell interface �les which GHC writes. In addition it adds source
positions and comments of packages for which a cabal �le with the corresponding source
�les can be found. The package you work on is treated di�erently, as not only external
exported entities are collected, but all exports from all modules are collected. This makes
it possible to get information about identi�ers:

• Which packages and modules export this identi�er?

• What is the type of the exported identi�er?

• If the source is found: What is the comment for this identi�er?

• If the source is found: What is the implementation?

If you like to get information about some identi�er in the code, the easiest way is to press
Ctrl and double click on it. If the id is known unambiguously the modules and info pane
will show information about it. If more then one possibility exist the search pane will
open and present the alternatives.
More precisely the operation is not triggered by the double click operation, but by the

release of the left button. So if the double click does not select the right area for a special
id like ++ you can select the desired characters with the left button and then release it
while you hold down the Ctrl key.

Currently Leksah only uses the collected �global� metadata, and does not know
what the Haskell compiler knows about your code. So de�nitions which are local to
a module will not be found, types of variables which are not exported will not be
known, and Leksah does not known about which de�nition is the one you are looking
for, because it is the only imported one.
We will work on adding this information in the future, but we started with the

�global� approach froom the intuition, that it takes most of our time to �nd something
that is not already imported and �known�. A local de�nition can be easily �nd by a
text search. Please try it out on your own.

6.1 The Modules Pane

In the modules pane (Figure 13) you get information about modules and their interface.
The displayed information depends on the open package. If no package is open only the
system scope has information. (If a package is open its name is displayed in the third
subdivision from the left of the status bar.)
We assume there is an open package. You can then select the scope of the displayed

information with the radio button on top of the modules pane. The Local scope shows
only modules which are part of the project. The Package scope shows all modules of the

15

Figure 13: Modules pane

package and all packages the current package depends on. The System scope shows all
modules of installed packages of the system. (You can get this list with ghc-pkg list).
If the Blacklist toggle button is selected, the packages in the blacklist are not displayed.

This doesn't mean that the information of this packages is not loaded or otherwise ac-
cessible. (I invented the blacklist mainly for the GHC package, which is very big and
does not use name-spaces and so pollutes the list). The Blacklist can be edited in the
preferences dialog.
If you select a module in the modules list, its interface is displayed in the interface list

on the right. You can search for a module or package by selecting the modules list and
typing some text. With the up and down arrows you �nd the next/previous matching
item. With the escape key or by selecting any other GUI element you leave the search
mode. If there is a little icon with a text in front of a module, Leksah has found a source
�le for this module. You can open this source �le, or bring it to the front if it is already
open with a double click on the module. (the same can be done with selecting Edit source
from the context menu.
By selecting an element in the Interface List the so called Info Pane is shown with

additional information. If there is a little with a text in front of an identi�er, Leksah has
found a source location for this element. You can open this source �le, or bring it to the
front and display the source for the selected location with a double click on the element.
(the same can be done with selecting Go to de�nition from the context menu. You can
again search for an identi�er by selecting the interface list and typing some text.
The easiets way if you want to edit some �le is not to choose File open, but to select

the modules pane with local scope, �nd the module by entering text, and double click
for editing the �le.
The easiest way to add a new module is by selecting Add module from the context

menu of the modules pane. The Construct Module dialog will open (Figure 14). You
have to enter the name of the module, the source path to use if their are alternatives and
if the module is exposed, if it is a library. Leksah will construct the directory, modify

16

Figure 14: Construct module dialog

Figure 15: Info pane

the cabal �le and construct an empty module �le from a template.

6.2 The Info Pane

The Info Pane (Figure 15) shows information about an interface element, which may be
a function, a class, a data de�nition It shows the identi�er, of which sort it is, the
package and module that it is exported by, it's haskell type and if possible a comment.
If you select an identi�er in an editor, and their is information about this identi�er

available in the package scope, it is automatically displayed in the info pane. The easiest
way to do this is to double click on an identi�er while pressing Ctrl. For special identi�ers
(e.g. a_) select the word and release the button, actually the search is initiated by the
release of the button.
Remember that only statically collected information is available this way. So the meta

data contains only information about items which are exported by some module.
If there is a source locating attached you can go to the de�nition by clicking the Source

button.
You can select the module and the interface element in the modules pane by clicking

the Modules button.
With the Usage button a pane opens which displays the modules which imports this

17

Figure 16: Search pane

element.
You can search for elements by typing text in the Identi�er �eld. For details see the

read the next section called Search Pane.

6.3 The Search Pane

You can search for a string by typing in characters in the Identi�er �eld of the Info
Pane. If the �eld contains less then 3 characters only exact matches are found. If more
characters are given the search result depends on the settings in the search pane (Figure
16). You can choose:

1. The scope in which to search, which can be local, package or system.

2. The way the search is executed, which can be exact, pre�x or as a regular expression.

3. You can choose if the search shall be case sensitive or not.

The result of the search is displayed in the list part of the Search pane. You can see the
sort of expression by the icon before the identi�er. You can see if the module reexports
the identi�er, or if the source of the identi�er is reachable. When you single click on a
search result, the info pane shows the corresponding information. If you double click on
an entry, the modules and info pane shows the corresponding information.
If you double click on an identi�er and press Ctrl in a source bu�er, it is a case sensitive

and exact search in the package scope. So this does not depend on the selection in the
search pane, even if the result is displayed in the list box of the search pane.
In the info pane you can click the button usage, if you want to explore which modules

import the selected element. This information is extracted from the Haskell Interface
�le.

18

Figure 17: Usage Pane

6.4 The Usage Pane

As said in the end of the last section, this pane shows which modules import a certain
element. The element is displaed in the top, and the modules which import it are
displayed in the list box. If you double click on an entry in the list box, the corresponding
source will be opened if possible. Then leksah tries a text search on the selected element.

6.5 Metadata collection

Figure 18: File menu

Metadata collection depends on the con�guration and can
be manually triggered.
If you select Metadata / Update Project the metadata

for the current project is collected from the .hi �les and the
source �les. You should select this if the metadata of the
current project is out of sync.
If you select Metadata / Update Lib Leksah checks if a

new library has installed and if this is the case collects meta-
data for it.
The metadata is stored in a folder under the .leksah folder

under your home folder. The folder will be named after the compiler version (e.g. ghc-
6.8.1). In this folder collected information about installed packages for a compiler version
is stored. (e.g. binary-0.4.1.pack). These �les are in binary format. You can rebuild the
whole metadata when you start Leksah with the -sr option (�Sources �Rebuild).
In the Metadata part of the preferences (Figure 9) you can edit the settings concerning

metadata collection.

7 Con�guration

Leksah is highly customizable. Here it is explained how this works.

19

Figure 19: Metadata Preferences

7.1 Window Layout

Figure 20: View menu

In Leksah there may be an active pane. The name of this
pane is displayed in the second compartment from the left
side in the status bar. Some actions like moving, splitting,
closing panes or �nding or replacing items in a text bu�er
act on the current pane, so check the display in the status
bar to see if the pane you want to act on is really active.
The layout of the Leksah window contains areas which

contain notebooks which contain so called panes. The di-
vision between the two areas is adjustable by the user by
dragging a handle. The areas form a binary tree, although
this tree is not visible to the user. Every area can be split
horizontally or vertically. Panes can collapsed, the e�ect of
collapsing depends on the position of the pane in the binary
layout tree.
Active panes can be moved between areas in the window.

The tabs of notebooks can be positioned at any of the four
directions, or the tabs can be switched o�. Note that holding
the mouse over the tabs and selecting the right button brings
up a menu of all panes in this area, so that you can for

20

Figure 21: GUI Preferences

example quickly select one of many open source bu�ers.
The layout will be saved with sessions. The session mechanism will be expained in the

next section. Currently there is no way to load di�erent layouts independent of the other
data stored in a sessions.
In the GUI Options part of the Preferences (Figure 21), you can con�gure options

regarding the layout, namely were windows of vertain types are opened.

7.2 Session handling

Figure 22: Session menu

When you close Leksah the current state is saved in the
�le Current.session in the ~/.leksah folder. A session con-
tains the layout of the window, its population, the active
package and some other state. When you restart Leksah it
recovers the state from this information. When you close a
package, the session is saved in the project folder in the �le
IDE.session. When you open a project and Leksah �nds a
IDE.session �le in the folder of the project you are going to
open, you get prompted if you want to open this session. This should help you to switch
between di�erent packages you are working on.
Beside of this you have the possibility to store and load named sessions manually by

using the session menu. Actually you may live well without using this feature.
You can as well choose to mark Forget Session, if you don't want the current session

to be stored. This can be useful, if something goes wrong (e.g. you hit accidently Ctrl -
0 and the layout collapses completely).

21

7.3 Shortcuts

You can con�gure the keystrokes by providing a .keymap �le, which can either be in the
.leksah folder or in the data folder. The name of the key map �le to be used can be
speci�ed in the Preferences dialog. A line in the .keymap �le looks like:
<ctrl>o -> FileOpen "Opens an existing �le"
Allowed Modi�ers are <shift> <ctrl> <alt> <apple> <compose>. <apple> is the

Windows key on PC keyboards. <compose> is often labeled Alt Gr. It is as well possible
to specify Emacs like keystrokes in the following way:
<ctrl>x/<ctrl>f -> FileOpen "Opens an existing �le"
The comment on the right will be displayed as tool tips on top of toolbar buttons, if

such exist for this action.
The name of the action can be any one of the ActionDescr's given in the action function

in the Module IDE.Menu.
Whenever you call an action, by a menu, a toolbar or a keystroke, the keystroke with

its associated ActionsString is displayed in the Status bar in the leftmost compartment.
Every keystroke shall obviously only be associated with one action, and more important

every action may only have one associated keystroke.
Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This

is because simple keystrokes are delegated to the standard gtk mechanism, while other
keystrokes are handled by Leksah.

7.4 Con�guration �les

Leksah stores its con�guration in a directory called ~/.leksah under your home folder.
The �le Default.prefs stores the general Preferences. These Preferences can be edited

in a dialog by choosing Help/Edit Prefs from the menu. If this �le is not available the
Default.prefs �le from the installed /data folder will be used.
The Current.session �le stores the state of the last session, so that Leksah will recover

the state from the last session. If this �le is not available it will be taken from the
installed /data folder.
The source_packages.txt �le stores source locations for installed packages. It can be

rebuild by calling Leksah with the -s or �Sources argument . Do this after you moved
your source or added sources for previous installed packages without sources.
The folder will contain one or many other folders (e.g. ghc-6.8.1). In this folder

collected information about installed packages for a compiler version is stored. (e.g.
binary-0.4.1.pack). These �les are in binary format. If you start Leksah with the -r or
�Rebuild argument, it cleans all .pack �les and rebuilds everything.
Files for Keymaps and SourceCandy may be stored here and will be found according

to the name selected in the Preferences Dialog. Leksah �rst searches in this folder and
after this in the /data folder.

22

7.5 Menus and Toolbars

Menus and Toolbars can be customized by editing the �le Default. menu. The format is
a gtk+ xml format. Leksah requires the de�nition of one menu bar and one toolbars in
this order. The names of the actions can be all in the ActionDescr's given in the action
function in the Module IDE.Menu.

8 The Future

The development of an IDE is a big issue, so Leksah is intended to become a community
project and everyone is invited to contribute. If you are a user or just test Leksah, we
would appreciate to here from you and your problems with and wishes for Leksah.
I personally plan to develop up to version 1.0. So, if the community does not show

enough interest, or some better alternative may appear, the features marked as Version
x may never be implemented.

8.1 Version 0.6

• Completion

• Working Class pane

• Properties of single �les (no highlight, no candy,...)

• Cancel build - Build only one time

• Source collector only one time

• Working history navigation

8.2 Version 1.0

• Interpreter

• Debugger

8.3 Version x

• Versioning support (Darcs,...)

• Test support (Quick check,...)

• Coverage (HPC,...)

• Pro�ling (Ghc Pro�ler,...)

• Refactoring (HaRe,...)

• FAD (Functional Analysis and Design,...)

• Plugins

23

9 Appendix

9.1 Command line arguments

Usage: leksah [OPTION...] files...

-r --Rebuild Cleans all .pack files and rebuild everything

-c --Collect Collects new information in .pack files

-u FILE --Uninstalled=FILE Gather info about an uninstalled package

-s --Sources Gather info about pathes to sources

-v --Version Show the version number of ide

-d --Debug Write ascii pack files

-l NAME --LoadSession=NAME Load session

-n --NoGUI Don't start the leksah GUI

9.2 The Candy �le

-- Candy file

"->" 0x2192 Trimming --RIGHTWARDS ARROW

"<-" 0x2190 Trimming --LEFTWARDS ARROW

"=>" 0x21d2 --RIGHTWARDS DOUBLE ARROW

">=" 0x2265 --GREATER-THAN OR EQUAL TO

"<=" 0x2264 --LESS-THAN OR EQUAL TO

"/=" 0x2260 --NOT EQUAL TO

"&&" 0x2227 --LOGICAL AND

"||" 0x2228 --LOGICAL OR

"++" 0x2295 --CIRCLED PLUS

--"::" 0x2551 Trimming --BAR

"::" 0x2237 Trimming --PROPORTION

".." 0x2025 --TWO DOT LEADER

"^" 0x2191 --UPWARDS ARROW

"==" 0x2261 --IDENTICAL TO

" . " 0x2218 --RING OPERATOR

"\" 0x03bb --GREEK SMALL LETTER LAMBDA

--"=<�<" 0x291e --

">�>=" 0x21a0

"$" 0x25ca

">�>" 0x226b -- MUCH GREATER THEN

"forall" 0x2200 --FOR ALL

"exist" 0x2203 --THERE EXISTS

"not" 0x00ac --NOT SIGN

"alpha" 0x03b1

"beta" 0x03b2

"gamma" 0x03b3

"delta" 0x03b4

"epsilon" 0x03b5

24

9.3 The Keymap �le

--Default Keymap file for Leksah

--Allowed Modifiers are <shift> <ctrl> <alt> <apple> <compose>

--<apple> is the Windows key on PC keyboards

--<compose> is often labelled Alt Gr.

--File

<ctrl>n -> FileNew "Opens a new empty buffer"

<ctrl>o -> FileOpen "Opens an existing file"

--<ctrl>x/<ctrl>f -> FileOpen "Opens an existing file"

<ctrl>s -> FileSave "Saves the current buffer"

--<ctrl>x/<ctrl>s -> FileSave "Saves the current buffer"

<ctrl><shift>s -> FileSaveAs "Saves the current buffer as a new file"

--<ctrl>x/<ctrl>w -> FileSaveAs "Saves the current buffer as a new file"

<ctrl>w -> FileClose "Closes the current buffer"

--<ctrl>x/k -> FileClose "Closes the current buffer"

<alt>F4 -> Quit "Quits this program"

--<ctrl>x/<ctrl>c -> Quit "Quits this program"

--Edit

<ctrl>z -> EditUndo "Undos the last user action"

--<ctrl>x/u -> EditUndo "Undos the last user action"

<shift><ctrl>y -> EditRedo "Redos the last user action"

--<ctrl>x/r -> EditRedo "Redos the last user action"

--<ctrl>x -> EditCut

--<ctrl>c -> EditCopy

--<ctrl>v -> EditPaste

-> EditDelete

<ctrl>a -> EditSelectAll "Select the whole text in the current buffer"

<ctrl>f -> EditFind "Search for a text string (Toggles the "

F3 -> EditFindNext "Find the next occurence of the text string"

<shift>F3 -> EditFindPrevious "Find the previous occurence of the text string"

<ctrl>l -> EditGotoLine "Go to line with a known index"

<ctrl><alt>Right -> EditComment "Add a line style comment to the selected lies"

<ctrl><alt>Left -> EditUncomment "Remove a line style comment"

<alt>Right -> EditShiftRight "Shift right"

<alt>Left -> EditShiftLeft "Shift Left"

--View

<alt><shift>Left -> ViewMoveLeft "Move the current pane left"

<alt><shift>Right -> ViewMoveRight "Move the current pane right"

<alt><shift>Up -> ViewMoveUp "Move the current pane up"

<alt><shift>Down -> ViewMoveDown "Move the current pane down"

<ctrl>2 -> ViewSplitHorizontal

"Split the current pane in horizontal direction"

<ctrl>3 -> ViewSplitVertical

25

"Split the current pane in vertical direction"

<ctrl>1 -> ViewCollapse "Collapse the panes around the currentla selected pane into one"

-> ViewTabsLeft "Shows the tabs of the current notebook on the left"

-> ViewTabsRight "Shows the tabs of the current notebook on the right"

-> ViewTabsUp "Shows the tabs of the current notebook on the top"

-> ViewTabsDown "Shows the tabs of the current notebook on the bottom"

-> ViewSwitchTabs "Switches if tabs for the current notebook are visible"

<ctrl>t -> ToggleToolbar

-> HelpDebug

-> HelpAbout

<ctrl>b -> BuildPackage

<ctrl><alt>r -> RunPackage

<ctrl>j -> NextError

<ctrl><shift>j -> PreviousError

<ctrl>m -> ShowModules

<ctrl>i -> ShowInterface

<ctrl>i -> ShowInfo

<ctrl><shift>e -> EditAlignEqual

<ctrl><shift>l -> EditAlignLeftArrow

<ctrl><shift>r -> EditAlignRightArrow

<ctrl><shift>t -> EditAlignTypeSig

-- <alt>i -> AddOneImport

-- <alt><shift>i -> AddAllImports

9.4 Preferences �le

Show line numbers:

True

--(True/False)

TextView Font: "Monospace 10"

Right margin: 101

--Size or 0 for no right margin

Tab width: 4

Use standard line ends even on windows:

True

Remove trailing blanks when saving a file:

True

Source candy: Default

--Empty for do not use or the name of a candy file in a config dir

Name of the keymap:

Default

--The name of a keymap file in a config dir

Editor Style: ""

LogView Font: "Sans 10"

26

Window default size:

(800,800)

--Default size of the main ide window specified as pair (int,int)

Browser: "firefox"

Standard source pane path:

[LeftP]

Standard log pane path:

[RightP,BottomP]

Standard modules pane path:

[RightP,TopP]

Paths under which haskell sources for packages may be found:

[]

Packages which are excluded from the modules pane:

[Dependency (PackageName "ghc") AnyVersion]

Update metadata after every build:

True

Update metadata at startup:

True

9.5 Session File

This �le is only displayed partial to give you an idea of what it may contain

Time of storage:

"Mon Jan 19 10:35:04 CET 2009"

Layout: VerticalP (TerminalP (Just TopP) 0) (HorizontalP (TerminalP (Just BottomP) 1)

(TerminalP (Just BottomP) 1) 396) 777

Population: [(Just (BufferSt (BufferState ...

Window size: (1440,850)

Active package:

Just "/home/j/Documents/Develop/leksah/leksah.cabal"

Active pane: Just "Log"

Toolbar visible:

True

FindbarState: (False,FindState ...

27

	Introduction
	Further Information
	Release Notes
	Version 0.4 Beta Release February 2009
	Version 0.1 Alpha Release February 2008

	Installing Leksah
	First start of Leksah
	The Editor
	Search and Replace
	Source Candy
	Editor Preferences

	Packages (Cabal)
	Package Editor
	Building
	Import Helper
	Flags and other operations

	Navigation and Metadata
	The Modules Pane
	The Info Pane
	The Search Pane
	The Usage Pane
	Metadata collection

	Configuration
	Window Layout
	Session handling
	Shortcuts
	Configuration files
	Menus and Toolbars

	The Future
	Version 0.6
	Version 1.0
	Version x

	Appendix
	Command line arguments
	The Candy file
	The Keymap file
	Preferences file
	Session File

