{-# LANGUAGE RankNTypes, TemplateHaskell #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Lens -- Copyright : (C) 2012 Edward Kmett -- (C) 2012 Dan Burton -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : RankNTypes, TemplateHaskell -- -- This package provides lenses that are compatible with other van -- Laarhoven lens libraries, while reducing the complexty of the imports. -- -- Lenses produced by this library are compatible with other van Laarhoven -- lens family libraries, such as lens-family, lens-family-core and -- lens-family-th, but the API is simpler. -- -- Note: If you merely want your library to provide lenses you may not have -- to actually import _any_ lens library, for a "Lens Bar Foo", just export -- a function with the signature: -- -- > foo :: Functor f => (Foo -> f Foo) -> Bar -> f Bar -- -- and then you can compose it with other lenses using (.). -- -- This package provides lenses, lens families, setters, setter families, -- getters, multilenses, multi-getters, and multi-lens families in such -- a way that they can all be composed automatically with (.). -- ---------------------------------------------------------------------------- module Control.Lens ( -- * Lenses Lens , LensFamily , Getter , Setter , SetterFamily , MultiLens , MultiLensFamily -- * Constructing lenses , makeLenses , makeLensesBy , makeLensesFor , lens , iso , clone , getting , gettingMany , setting -- * Manipulating Values , reading , modifying , writing , (^.), (^$) , (^%=), (^=), (^+=), (^-=), (^*=), (^/=), (^||=), (^&&=) -- * Manipulating State , access , Focus(..) , (%=), (~=), (%%=), (+=), (-=), (*=), (//=), (||=), (&&=) -- * Lenses and LensFamilies , fstL , sndL , keyL , intKeyL , memberL , intMemberL , identityL , atL -- * MultiGetters , folded -- ** MultiGetter combinators , mapOf , foldMapOf , foldrOf , foldOf , toListOf , anyOf, allOf , andOf, orOf , productOf, sumOf , traverseOf_ , forOf_ , sequenceAOf_ , mapMOf_ , forMOf_ , sequenceOf_ , asumOf, msumOf , concatMapOf , concatOf , elemOf , notElemOf -- * MultiLenses , constML , keyML , intKeyML , headML , tailML , leftML , elementML -- ** MultiLens combinators , traverseOf , mapMOf , sequenceAOf , sequenceOf -- * Implementation details , IndexedStore , Focusing , Traversal ) where import Control.Applicative as Applicative import Control.Monad (liftM, MonadPlus(..)) import Control.Monad.State.Class import qualified Control.Monad.Trans.State.Lazy as Lazy import qualified Control.Monad.Trans.State.Strict as Strict import Control.Monad.Trans.Reader import Data.Char (toLower) import Data.Foldable as Foldable import Data.Functor.Identity import Data.IntMap as IntMap import Data.IntSet as IntSet import Data.Map as Map import Data.Monoid import Data.Set as Set import Data.Traversable import Language.Haskell.TH infixl 8 ^. infixr 4 ^%=, ^=, ^+=, ^*=, ^-=, ^/=, ^&&=, ^||= infix 4 ~=, %=, %%=, +=, -=, *=, //=, &&=, ||= infixr 0 ^$ type Lens a b = forall f. Functor f => (b -> f b) -> a -> f a type LensFamily a b c d = forall f. Functor f => (c -> f d) -> a -> f b type Getter a b = forall x y z. (b -> Const z x) -> a -> Const z y type Setter a b = (b -> Identity b) -> a -> Identity a type SetterFamily a b c d = (c -> Identity d) -> a -> Identity b type MultiGetter a c = forall x y m. Monoid m => (c -> Const m x) -> a -> Const m y type MultiLens a b = forall f. Applicative f => (b -> f b) -> a -> f a type MultiLensFamily a b c d = forall f. Applicative f => (c -> f d) -> a -> f b -- | Build a lens from a getter and a setter lens :: Functor f => (a -> c) -> (d -> a -> b) -> (c -> f d) -> a -> f b lens ac dab cfd a = (`dab` a) <$> cfd (ac a) {-# INLINE lens #-} -- | Built a lens from an isomorphism or an isomorphism family iso :: Functor f => (a -> c) -> (d -> b) -> (c -> f d) -> a -> f b iso f g h a = g <$> h (f a ) {-# INLINE iso #-} -- | Build a getter getting :: (a -> b) -> Getter a b getting f g a = Const (getConst (g (f a))) {-# INLINE getting #-} -- | Building a multigetter gettingMany :: Foldable f => (a -> f b) -> MultiGetter a b gettingMany f g a = Const (foldMap (getConst . g) (f a)) -- | Build a setter setting :: ((c -> d) -> a -> b) -> SetterFamily a b c d setting f g a = Identity (f (runIdentity . g) a) {-# INLINE setting #-} ------------------------------------------------------------------------------ -- Using Lenses ------------------------------------------------------------------------------ -- | Get the value of a 'Getter', 'Lens' or 'LensFamily' or the fold of a -- 'MultiGetter', 'MultiLens' or 'MultiLensFamily' that points at monoidal -- values. reading :: ((c -> Const c d) -> a -> Const c b) -> a -> c reading l a = getConst (l Const a) {-# INLINE reading #-} -- | Modify the target of a 'Lens', 'LensFamily' or all the targets of a -- 'Multilens', 'MultiLensFamily', 'Setter' or 'SetterFamily' mapOf, modifying :: ((c -> Identity d) -> a -> Identity b) -> (c -> d) -> a -> b mapOf l f a = runIdentity (l (Identity . f) a) modifying = mapOf {-# INLINE mapOf #-} {-# INLINE modifying #-} -- | Replace the target of a 'Lens', 'LensFamily', 'Setter' or 'SetterFamily' writing :: ((c -> Identity d) -> a -> Identity b) -> d -> a -> b writing l d a = runIdentity (l (\_ -> Identity d) a) {-# INLINE writing #-} -- | Read the value of a 'Getter', 'Lens' or 'LensFamily'. -- This is the same operation as 'reading'. (^$) :: ((c -> Const c d) -> a -> Const c b) -> a -> c l ^$ a = getConst (l Const a) {-# INLINE (^$) #-} -- | Read a field from a 'Getter', 'Lens' or 'LensFamily'. -- The fixity and semantics are such that subsequent field accesses can be -- performed with (Prelude..) This is the same operation as 'flip reading' -- -- > ghci> ((0, 1 :+ 2), 3)^.fstL.sndL.getting magnitude -- > 2.23606797749979 (^.) :: a -> ((c -> Const c d) -> a -> Const c b) -> c a ^. l = getConst (l Const a) {-# INLINE (^.) #-} -- | Modifies the target of a 'Lens', 'LensFamily', 'Setter', or 'SetterFamily'. -- -- This is an infix version of 'mapOf' (^%=) :: ((c -> Identity d) -> a -> Identity b) -> (c -> d) -> a -> b l ^%= f = runIdentity . l (Identity . f) {-# INLINE (^%=) #-} -- | Replaces the target(s) of a 'Lens', 'LensFamily', 'Setter' or 'SetterFamily'. -- -- This is an infix version of 'writing' (^=) :: ((c -> Identity d) -> a -> Identity b) -> d -> a -> b l ^= v = runIdentity . l (Identity . const v) {-# INLINE (^=) #-} -- | Increment the target(s) of a numerically valued 'Lens' or Setter' -- -- > ghci> fstL ^+= 1 $ (1,2) -- > (2,2) (^+=) :: Num c => ((c -> Identity c) -> a -> Identity a) -> c -> a -> a l ^+= n = mapOf l (+ n) {-# INLINE (^+=) #-} -- | Multiply the target(s) of a numerically valued 'Lens' or Setter' -- -- > ghci> sndL ^*= 4 $ (1,2) -- > (1,8) (^*=) :: Num c => ((c -> Identity c) -> a -> Identity a) -> c -> a -> a l ^-= n = mapOf l (`subtract` n) {-# INLINE (^-=) #-} -- | Decrement the target(s) of a numerically valued 'Lens' or 'Setter' -- -- > ghci> fstL ^-= 2 $ (1,2) -- > (-1,2) (^-=) :: Num c => ((c -> Identity c) -> a -> Identity a) -> c -> a -> a l ^*= n = mapOf l (* n) {-# INLINE (^*=) #-} -- | Divide the target(s) of a numerically valued 'Lens' or 'Setter' (^/=) :: Fractional c => ((c -> Identity c) -> a -> Identity a) -> c -> a -> a l ^/= n = mapOf l (/ n) -- | Logically '||' the target(s) of a 'Bool'-valued 'Lens' or 'Setter' (^||=):: ((Bool -> Identity Bool) -> a -> Identity a) -> Bool -> a -> a l ^||= n = mapOf l (|| n) {-# INLINE (^||=) #-} -- | Logically '&&' the target(s) of a 'Bool'-valued 'Lens' or 'Setter' (^&&=) :: ((Bool -> Identity Bool) -> a -> Identity a) -> Bool -> a -> a l ^&&= n = mapOf l (&& n) {-# INLINE (^&&=) #-} ------------------------------------------------------------------------------ -- Cloning Lenses ------------------------------------------------------------------------------ data IndexedStore c d a = IndexedStore (d -> a) c instance Functor (IndexedStore c d) where fmap f (IndexedStore g c) = IndexedStore (f . g) c -- | Cloning a 'Lens' or 'LensFamily' is one way to make sure you arent given -- something weaker, such as a 'MultiLens' or 'MultiLensFamily', and can be used -- as a way to pass around lenses that have to be monomorphic in 'f'. clone :: Functor f => ((c -> IndexedStore c d d) -> a -> IndexedStore c d b) -> (c -> f d) -> a -> f b clone f cfd a = case f (IndexedStore id) a of IndexedStore db c -> db <$> cfd c {-# INLINE clone #-} ------------------------------------------------------------------------------ -- Common Lenses ------------------------------------------------------------------------------ -- | This is a lens family that can change the value (and type) of the first field of -- a pair. -- > ghci> (1,2)^.fstL -- > 1 -- -- > ghci> fstL ^= "hello" $ (1,2) -- > ("hello",2) fstL :: LensFamily (a,c) (b,c) a b fstL f (a,c) = (\b -> (b,c)) <$> f a {-# INLINE fstL #-} -- | As 'fstL', but for the second field of a pair. sndL :: LensFamily (c,a) (c,b) a b sndL f (c,a) = (,) c <$> f a {-# INLINE sndL #-} -- | This lens can be used to read, write or delete a member of a 'Map'. -- -- > ghci> Map.fromList [("hello",12)] ^. keyL "hello" -- > Just 12 keyL :: Ord k => k -> Lens (Map k v) (Maybe v) keyL k f m = go <$> f (Map.lookup k m) where go Nothing = Map.delete k m go (Just v') = Map.insert k v' m {-# INLINE keyL #-} -- | This lens can be used to read, write or delete a member of an 'IntMap'. -- -- > ghci> IntMap.fromList [(1,"hello")] ^. keyL 1 -- > Just "hello" -- -- > ghci> keyL 2 ^= "goodbye" $ IntMap.fromList [(1,"hello")] -- > fromList [(1,"hello"),(2,"goodbye")] intKeyL :: Int -> Lens (IntMap v) (Maybe v) intKeyL k f m = go <$> f (IntMap.lookup k m) where go Nothing = IntMap.delete k m go (Just v') = IntMap.insert k v' m {-# INLINE intKeyL #-} -- | This lens can be used to read, write or delete a member of a 'Set' -- -- > ghci> memberL 3 ^= False $ Set.fromList [1,2,3,4] -- > fromList [1,2,4] memberL :: Ord k => k -> Lens (Set k) Bool memberL k f s = go <$> f (Set.member k s) where go False = Set.delete k s go True = Set.insert k s {-# INLINE memberL #-} -- | This lens can be used to read, write or delete a member of an 'IntSet' -- -- > ghci> intMemberL 3 ^= False $ IntSet.fromList [1,2,3,4] -- > fromList [1,2,4] intMemberL :: Int -> Lens IntSet Bool intMemberL k f s = go <$> f (IntSet.member k s) where go False = IntSet.delete k s go True = IntSet.insert k s {-# INLINE intMemberL #-} -- | This lens can be used to access the contents of the Identity monad identityL :: LensFamily (Identity a) (Identity b) a b identityL f (Identity a) = Identity <$> f a {-# INLINE identityL #-} -- | This lens can be used to change the result of a function but only where -- the arguments match the key given. -- atL :: Eq e => e -> Lens (e -> a) a atL e afa ea = go <$> afa a where a = ea e go a' e' | e == e' = a' | otherwise = a {-# INLINE atL #-} ------------------------------------------------------------------------------ -- State ------------------------------------------------------------------------------ -- | Access a field of a state monad access :: MonadState a m => ((c -> Const c d) -> a -> Const c b) -> m c access l = gets (^. l) {-# INLINE access #-} newtype Focusing m c a = Focusing { unfocusing :: m (c, a) } instance Monad m => Functor (Focusing m c) where fmap f (Focusing m) = Focusing (liftM (fmap f) m) instance (Monad m, Monoid c) => Applicative (Focusing m c) where pure a = Focusing (return (mempty, a)) Focusing mf <*> Focusing ma = Focusing $ do (c, f) <- mf (d, a) <- ma return (mappend c d, f a) -- | This class allows us to use 'focus' on a number of different monad transformers. class Focus st where -- | Use a lens to lift an operation with simpler context into a larger context focus :: Monad m => ((b -> Focusing m c b) -> a -> Focusing m c a) -> st b m c -> st a m c instance Focus Strict.StateT where focus l (Strict.StateT m) = Strict.StateT $ \a -> unfocusing (l (Focusing . m) a) instance Focus Lazy.StateT where focus l (Lazy.StateT m) = Lazy.StateT $ \a -> unfocusing (l (Focusing . m) a) -- | We can focus Reader environments, too! instance Focus ReaderT where focus l (ReaderT m) = ReaderT $ \a -> liftM undefined $ unfocusing $ l (\b -> Focusing $ (\c -> (c,b)) `liftM` m b) a -- | Set the value of a field in our monadic state (~=) :: MonadState a m => Setter a b -> b -> m () l ~= b = modify (l ^= b) {-# INLINE (~=) #-} -- | Modify the value of a field in our monadic state (%=) :: MonadState a m => Setter a b -> (b -> b) -> m () l %= f = modify (l ^%= f) {-# INLINE (%=) #-} -- | Modify the value of a field in our monadic state and return some information about it (%%=) :: MonadState a m => ((b -> (c,b)) -> a -> (c,a)) -> (b -> (c, b)) -> m c l %%= f = state (l f) {-# INLINE (%%=) #-} -- | Modify a numeric field in our monadic state by adding to it (+=) :: (MonadState a m, Num b) => Setter a b -> b -> m () l += b = modify $ l ^+= b {-# INLINE (+=) #-} -- | Modify a numeric field in our monadic state by subtracting from it (-=) :: (MonadState a m, Num b) => Setter a b -> b -> m () l -= b = modify $ l ^-= b {-# INLINE (-=) #-} -- | Modify a numeric field in our monadic state by multiplying it (*=) :: (MonadState a m, Num b) => Setter a b -> b -> m () l *= b = modify $ l ^*= b {-# INLINE (*=) #-} -- | Modify a numeric field in our monadic state by dividing it (//=) :: (MonadState a m, Fractional b) => Setter a b -> b -> m () l //= b = modify $ l ^/= b {-# INLINE (//=) #-} -- | Modify a boolean field in our monadic state by computing its logical '&&' with another value. (&&=):: MonadState a m => Setter a Bool -> Bool -> m () l &&= b = modify $ l ^&&= b {-# INLINE (&&=) #-} -- | Modify a boolean field in our monadic state by computing its logical '||' with another value. (||=) :: MonadState a m => Setter a Bool -> Bool -> m () l ||= b = modify $ l ^||= b {-# INLINE (||=) #-} -------------------------- -- Multigetter combinators -------------------------- -- | > foldMapOf :: Monoid m => MultiGetter a b -> (b -> m) -> a -> m foldMapOf :: Monoid m => ((c -> Const m d) -> a -> Const m b) -> (c -> m) -> a -> m foldMapOf l f = getConst . l (Const . f) {-# INLINE foldMapOf #-} -- | > foldOf :: Monoid m => MultiGetter a m -> a -> m foldOf :: Monoid m => ((m -> Const m n) -> a -> Const m b) -> a -> m foldOf l = getConst . l Const {-# INLINE foldOf #-} -- | > foldrOf :: MultiGetter a b -> (b -> c -> c) -> c -> a -> c foldrOf :: ((c -> Const (Endo e) d) -> a -> Const (Endo e) b) -> (c -> e -> e) -> e -> a -> e foldrOf l f z t = appEndo (foldMapOf l (Endo . f) t) z {-# INLINE foldrOf #-} -- | > toListOf :: MultiGetter a b -> a -> [b] toListOf :: ((c -> Const [c] d) -> a -> Const [c] b) -> a -> [c] toListOf l = foldMapOf l return {-# INLINE toListOf #-} andOf :: ((Bool -> Const All d) -> a -> Const All b) -> a -> Bool andOf l = getAll . foldMapOf l All {-# INLINE andOf #-} orOf :: ((Bool -> Const Any d) -> a -> Const Any b) -> a -> Bool orOf l = getAny . foldMapOf l Any {-# INLINE orOf #-} -- | > anyOf :: MultiGetter a b -> (b -> Bool) -> a -> Bool anyOf :: ((c -> Const Any d) -> a -> Const Any b) -> (c -> Bool) -> a -> Bool anyOf l f = getAny . foldMapOf l (Any . f) {-# INLINE anyOf #-} -- | > allOf :: MultiGetter a b -> (b -> Bool) -> a -> Bool allOf :: ((c -> Const All d) -> a -> Const All b) -> (c -> Bool) -> a -> Bool allOf l f = getAll . foldMapOf l (All . f) {-# INLINE allOf #-} productOf :: Num c => ((c -> Const (Product c) d) -> a -> Const (Product c) b) -> a -> c productOf l = getProduct . foldMapOf l Product {-# INLINE productOf #-} sumOf :: Num c => ((c -> Const (Sum c) d) -> a -> Const (Sum c) b) -> a -> c sumOf l = getSum . foldMapOf l Sum {-# INLINE sumOf #-} -- | > traverseOf_ :: Applicative f => MultiGetter a b -> (b -> f c) -> a -> f () traverseOf_ :: Applicative f => ((c -> Const (Traversal f) d) -> a -> Const (Traversal f) b) -> (c -> f e) -> a -> f () traverseOf_ l f = getTraversal . foldMapOf l (Traversal . (() <$) . f) {-# INLINE traverseOf_ #-} -- | > forOf_ :: Applicative f => MultiGetter a b -> a -> (b -> f c) -> f () forOf_ :: Applicative f => ((c -> Const (Traversal f) d) -> a -> Const (Traversal f) b) -> a -> (c -> f e) -> f () forOf_ l a f = traverseOf_ l f a {-# INLINE forOf_ #-} -- | > sequenceAOf_ :: Applicative f => MultiGetter a (f ()) -> a -> f () sequenceAOf_ :: Applicative f => ((f () -> Const (Traversal f) d) -> a -> Const (Traversal f) e) -> a -> f () sequenceAOf_ l = getTraversal . foldMapOf l (Traversal . (() <$)) {-# INLINE sequenceAOf_ #-} -- | > mapMOf_ :: Monad m => MultiGetter a b -> (b -> m c) -> a -> m () mapMOf_ :: Monad m => ((c -> Const (Traversal (WrappedMonad m)) d) -> a -> Const (Traversal (WrappedMonad m)) b) -> (c -> m e) -> a -> m () mapMOf_ l f = unwrapMonad . traverseOf_ l (WrapMonad . f) {-# INLINE mapMOf_ #-} -- | > forMOf_ :: Monad m => MultiGetter a b -> a -> (b -> m c) -> m () forMOf_ :: Monad m => ((c -> Const (Traversal (WrappedMonad m)) d) -> a -> Const (Traversal (WrappedMonad m)) b) -> a -> (c -> m e) -> m () forMOf_ l a f = mapMOf_ l f a {-# INLINE forMOf_ #-} -- | > sequenceOf_ :: Monad m => MultiGetter a (m b) -> a -> m () sequenceOf_ :: Monad m => ((m c -> Const (Traversal (WrappedMonad m)) d) -> a -> Const (Traversal (WrappedMonad m)) b) -> a -> m () sequenceOf_ l = unwrapMonad . traverseOf_ l WrapMonad {-# INLINE sequenceOf_ #-} -- | The sum of a collection of actions, generalizing 'concatOf'. asumOf :: Alternative f => ((f c -> Const (Endo (f c)) d) -> a -> Const (Endo (f c)) b) -> a -> f c asumOf l = foldrOf l (<|>) Applicative.empty {-# INLINE asumOf #-} -- | The sum of a collection of actions, generalizing 'concatOf'. msumOf :: MonadPlus m => ((m c -> Const (Endo (m c)) d) -> a -> Const (Endo (m c)) b) -> a -> m c msumOf l = foldrOf l mplus mzero {-# INLINE msumOf #-} elemOf :: Eq c => ((c -> Const Any d) -> a -> Const Any b) -> c -> a -> Bool elemOf l = anyOf l . (==) {-# INLINE elemOf #-} notElemOf :: Eq c => ((c -> Const Any d) -> a -> Const Any b) -> c -> a -> Bool notElemOf l c = not . elemOf l c {-# INLINE notElemOf #-} -- | concatMapOf :: MultiGetter a c -> (c -> [e]) -> a -> [e] concatMapOf :: ((c -> Const [e] d) -> a -> Const [e] b) -> (c -> [e]) -> a -> [e] concatMapOf l ces a = getConst (l (Const . ces) a) {-# INLINE concatMapOf #-} concatOf :: (([e] -> Const [e] d) -> a -> Const [e] b) -> a -> [e] concatOf = reading {-# INLINE concatOf #-} -------------------------- -- Multilens combinators -------------------------- traverseOf :: Applicative f => ((c -> f d) -> a -> f b) -> (c -> f d) -> a -> f b traverseOf = id {-# INLINE traverseOf #-} mapMOf :: Monad m => ((c -> WrappedMonad m d) -> a -> WrappedMonad m b) -> (c -> m d) -> a -> m b mapMOf l cmd a = unwrapMonad (l (WrapMonad . cmd) a) {-# INLINE mapMOf #-} sequenceAOf :: Applicative f => ((f b -> f (f b)) -> a -> f b) -> a -> f b sequenceAOf l = l pure {-# INLINE sequenceAOf #-} sequenceOf :: Monad m => ((m b -> WrappedMonad m (m b)) -> a -> WrappedMonad m b) -> a -> m b sequenceOf l = unwrapMonad . l pure {-# INLINE sequenceOf #-} -------------------------- -- Multigetters -------------------------- folded :: Foldable f => MultiGetter (f a) a folded = gettingMany id {-# INLINE folded #-} -------------------------- -- Multilenses -------------------------- -- | This is the partial lens that never succeeds at returning any values constML :: Applicative f => (c -> f d) -> a -> f a constML = const pure {-# INLINE constML #-} headML :: Applicative f => (a -> f a) -> [a] -> f [a] headML _ [] = pure [] headML f (a:as) = (:as) <$> f a {-# INLINE headML #-} tailML :: Applicative f => ([a] -> f [a]) -> [a] -> f [a] tailML _ [] = pure [] tailML f (a:as) = (a:) <$> f as {-# INLINE tailML #-} leftML :: Applicative f => (a -> f b) -> Either a c -> f (Either b c) leftML f (Left a) = Left <$> f a leftML _ (Right c) = pure $ Right c {-# INLINE leftML #-} keyML :: (Applicative f, Ord k) => k -> (v -> f v) -> Map k v -> f (Map k v) keyML k = keyL k . traverse {-# INLINE keyML #-} intKeyML :: Applicative f => Int -> (v -> f v) -> IntMap v -> f (IntMap v) intKeyML k = intKeyL k . traverse {-# INLINE intKeyML #-} elementML :: (Applicative f, Traversable t) => Int -> (a -> f a) -> t a -> f (t a) elementML j f ta = fst (runSA (traverse go ta) 0) where go a = SA $ \i -> (if i == j then f a else pure a, i + 1) {-# INLINE elementML #-} ------------------------------------------------------------------------------ -- Implementation details ------------------------------------------------------------------------------ newtype SA f a = SA { runSA :: Int -> (f a, Int) } instance Functor f => Functor (SA f) where fmap f (SA m) = SA $ \i -> case m i of (fa, j) -> (fmap f fa, j) instance Applicative f => Applicative (SA f) where pure a = SA (\i -> (pure a, i)) SA mf <*> SA ma = SA $ \i -> case mf i of (ff, j) -> case ma j of (fa, k) -> (ff <*> fa, k) newtype Traversal f = Traversal { getTraversal :: f () } instance Applicative f => Monoid (Traversal f) where mempty = Traversal (pure ()) Traversal ma `mappend` Traversal mb = Traversal (ma *> mb) -- wrapMonadL :: Functor f => (m a -> f (n b)) -> WrappedMonad m a -> f (WrappedMonad n b) -- wrapMonadL f (WrapMonad ma) = WrapMonad <$> f ma ------------------------------------------------------------------------------ -- Template Haskell ------------------------------------------------------------------------------ -- | By default, if the field name begins with an underscore, -- then the underscore will simply be removed (and the new first character -- lowercased if necessary). defaultNameTransform :: String -> Maybe String defaultNameTransform ('_':c:rest) = Just $ toLower c : rest defaultNameTransform _ = Nothing -- | Information about the larger type the lens will operate on. type LensTypeInfo = (Name, [TyVarBndr]) -- | Information about the smaller type the lens will operate on. type ConstructorFieldInfo = (Name, Strict, Type) -- | Derive lenses with the provided name transformation -- and filtering function. Produce @Just lensName@ to generate a lens -- of the resultant name, or @Nothing@ to not generate a lens -- for the input record name. -- -- Example usage: -- -- > makeLensesBy (\n -> Just (n ++ "L")) ''Foo makeLensesBy :: (String -> Maybe String) -- ^ the name transformer -> Name -> Q [Dec] makeLensesBy nameTransform datatype = do typeInfo <- extractLensTypeInfo datatype let derive1 = deriveLens nameTransform typeInfo constructorFields <- extractConstructorFields datatype Prelude.concat <$> Prelude.mapM derive1 constructorFields extractLensTypeInfo :: Name -> Q LensTypeInfo extractLensTypeInfo datatype = do let datatypeStr = nameBase datatype i <- reify datatype return $ case i of TyConI (DataD _ n ts _ _) -> (n, ts) TyConI (NewtypeD _ n ts _ _) -> (n, ts) _ -> error $ "Can't derive Lens for: " ++ datatypeStr ++ ", type name required." extractConstructorFields :: Name -> Q [ConstructorFieldInfo] extractConstructorFields datatype = do let datatypeStr = nameBase datatype i <- reify datatype return $ case i of TyConI (DataD _ _ _ [RecC _ fs] _) -> fs TyConI (NewtypeD _ _ _ (RecC _ fs) _) -> fs TyConI (DataD _ _ _ [_] _) -> error $ "Can't derive Lens without record selectors: " ++ datatypeStr TyConI NewtypeD{} -> error $ "Can't derive Lens without record selectors: " ++ datatypeStr TyConI TySynD{} -> error $ "Can't derive Lens for type synonym: " ++ datatypeStr TyConI DataD{} -> error $ "Can't derive Lens for tagged union: " ++ datatypeStr _ -> error $ "Can't derive Lens for: " ++ datatypeStr ++ ", type name required." -- Derive a lens for the given record selector -- using the given name transformation function. deriveLens :: (String -> Maybe String) -> LensTypeInfo -> ConstructorFieldInfo -> Q [Dec] deriveLens nameTransform ty field = case nameTransform (nameBase fieldName) of Nothing -> return [] Just lensNameStr -> do body <- deriveLensBody (mkName lensNameStr) fieldName return [body] where (fieldName, _fieldStrict, _fieldType) = field (_tyName, _tyVars) = ty -- just to clarify what's here -- Given a record field name, -- produces a single function declaration: -- lensName f a = (\x -> a { field = x }) `fmap` f (field a) deriveLensBody :: Name -> Name -> Q Dec deriveLensBody lensName fieldName = funD lensName [defLine] where a = mkName "a" f = mkName "f" defLine = clause pats (normalB body) [] pats = [varP f, varP a] body = [| (\x -> $(record a fieldName [|x|])) `fmap` $(appE (varE f) (appE (varE fieldName) (varE a))) |] record rec fld val = val >>= \v -> recUpdE (varE rec) [return (fld, v)] -- | Derive lenses for the record selectors in -- a single-constructor data declaration, -- or for the record selector in a newtype declaration. -- Lenses will only be generated for record fields which -- are prefixed with an underscore. -- -- Example usage: -- -- > makeLenses ''Foo makeLenses :: Name -> Q [Dec] makeLenses = makeLensesBy defaultNameTransform -- | Derive lenses, specifying explicit pairings of @(fieldName, lensName)@. -- -- Example usage: -- -- > makeLensesFor [("_foo", "fooLens"), ("bar", "lbar")] ''Foo makeLensesFor :: [(String, String)] -> Name -> Q [Dec] makeLensesFor fields = makeLensesBy (`Prelude.lookup` fields)