{-# LANGUAGE Rank2Types #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Lens.Indexed -- Copyright : (C) 2012 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : rank 2 types, MPTCs, TFs, flexible -- -- Combinators for working with 'Indexed' functions. ---------------------------------------------------------------------------- module Control.Lens.Indexed ( -- * Indexed Functions Indexed(..) , Indexable , Index(..) , (<.>), (<.), (.>) , icompose , reindex ) where infixr 9 <.>, <., .> -- | Permit overloading of function application for things that also admit a notion of a key or index. -- | Provides overloading for 'Indexed' functions. class Indexed i k where -- | Build a function from an 'Indexed' function index :: ((i -> a) -> b) -> k a b -- | Type alias for passing around polymorphic 'Indexed' functions that can be called 'withIndex' or -- directly as a function type Indexable i a b = forall k. Indexed i k => k a b instance Indexed i (->) where index f = f . const {-# INLINE index #-} -- | A function with access to a index. This constructor may be useful when you need to store -- a 'Indexable' in a container to avoid @ImpredicativeTypes@. newtype Index i a b = Index { withIndex :: (i -> a) -> b } -- | Using an equality witness to avoid potential overlapping instances -- and aid dispatch. instance i ~ j => Indexed i (Index j) where index = Index {-# INLINE index #-} -- | Compose an 'Indexed' function with a non-indexed function. -- -- Mnemonically, the @<@ points to the index we want to preserve. (<.) :: Indexed i k => Index i b c -> (a -> b) -> k a c Index ibc <. ab = index $ \ia -> ibc (ab . ia) {-# INLINE (<.) #-} {-# SPECIALIZE (<.) :: Index i b c -> (a -> b) -> a -> c #-} {-# SPECIALIZE (<.) :: Index i b c -> (a -> b) -> Index i a c #-} -- | Compose a non-indexed function with an 'Indexed' function. -- -- Mnemonically, the @>@ points to the index we want to preserve. (.>) :: Indexed i k => (b -> c) -> Index i a b -> k a c bc .> Index iab = index (bc . iab) {-# INLINE (.>) #-} {-# SPECIALIZE (.>) :: (b -> c) -> Index i a b -> a -> c #-} {-# SPECIALIZE (.>) :: (b -> c) -> Index i a b -> Index i a c #-} -- | Remap the index. reindex :: Indexed j k => (i -> j) -> Index i a b -> k a b reindex ij (Index iab) = index $ \ ja -> iab $ \i -> ja (ij i) {-# SPECIALIZE reindex :: (i -> j) -> Index i a b -> a -> b #-} {-# SPECIALIZE reindex :: (i -> j) -> Index i a b -> Index j a b #-} -- | Composition of 'Indexed' functions -- -- Mnemonically, the @<@ and @>@ points to the fact that we want to preserve the indices. (<.>) :: Indexed (i, j) k => Index i b c -> Index j a b -> k a c f <.> g = icompose (,) f g {-# INLINE (<.>) #-} {-# SPECIALIZE (<.>) :: Index i b c -> Index j a b -> a -> c #-} {-# SPECIALIZE (<.>) :: Index i b c -> Index j a b -> Index (i,j) a c #-} -- | Composition of 'Indexed' functions with a user supplied function for combining indexs icompose :: Indexed k r => (i -> j -> k) -> Index i b c -> Index j a b -> r a c icompose ijk (Index ibc) (Index jab) = index $ \ka -> ibc $ \i -> jab $ \j -> ka (ijk i j) {-# INLINE icompose #-} {-# SPECIALIZE icompose :: (i -> j -> k) -> Index i b c -> Index j a b -> a -> c #-} {-# SPECIALIZE icompose :: (k ~ l) => (i -> j -> k) -> Index i b c -> Index j a b -> Index l a c #-}