
Dickinson User Guide

Vanessa McHale

Contents
Introduction 2

Installing Dickinson 2
Editor Integration . 2

Program Structure 2
Example . 2

Comments . 3
Definitions & Names . 3
Branching . 3
Interpolation . 4

Multi-Line Strings . 4
Expressions . 4

Lambdas . 5
Matches & Tuples . 5
Tags . 6

Types . 7

REPL 7
Saving & Restoring States . 8
Builtins . 8

Lints 9

Libraries 9
Using Libraries . 9

Example . 9
Third-Party Libraries . 9

Writing Libraries . 10

Scripting 10

Examples 10
Cowsay . 10

1

Noun Declension . 11
Shakespearean Insult Generator . 12
Lyrics Bot . 12

Introduction

Dickinson is a text-generation language for generative literature. Each time you
run your code, you get back randomly generated text.

It provides a language to define random texts like the Magical Realism Bot or
fortune program.

Installing Dickinson

First, install cabal and GHC. Then:

cabal install language-dickinson

This provides emd, the command-line interface to the Dickinson language.

You may also wish to install manpages for reference information about emd.
Manpages are installed at

emd man

Editor Integration

A vim plugin is available.

Program Structure

Dickinson files begin with %-, followed by definitions.

Example

Here is a simple Dickinson program:

%-

(:def main
(:oneof
(| "heads")

2

https://twitter.com/MagicRealismBot
https://en.wikipedia.org/wiki/Fortune_%28Unix%29
https://www.haskell.org/cabal/download.html
https://www.haskell.org/ghc/download.html
https://github.com/vmchale/dickinson/tree/master/vim

(| "tails")))

Save this as gambling.dck. Then:

emd run gambling.dck

which will display either heads or tails.

The :oneof construct selects one of its branches with equal probability.

In general, when you emd run code, you’ll see the result of evaluating main.

Comments

Comments are indicated with a ; at the beginning of the line. Anything to the
right of the ; is ignored. So

%-

; This returns one of 'heads' or 'tails'
(:def main
(:oneof
(| "heads")
(| "tails")))

is perfectly valid code and is functionally the same as the above.

Definitions & Names

We can define names and reference them later:

%-

(:def gambling
(:oneof
(| "heads")
(| "tails")))

(:def main
gambling)

We can emd run this and it will give the same results as above.

Branching

When you use :oneof, Dickinson picks one of the branches with equal probability.
If this is not what you want, you can use :branch:

3

%-

(:def unfairCoin
(:branch
(| 1.0 "heads")
(| 1.1 "tails")))

(:def main
unfairCoin)

This will scale things so that picking "tails" is a little more likely.

Interpolation

We can recombine past definitions via string interpolation:

%-

(:def adjective
(:oneof
(| "beautiful")
(| "auspicious")
(| "cold")))

(:def main
"What a ${adjective}, ${adjective} day!")

Multi-Line Strings

For large blocks of text, we can use multi-line strings.

(:def twain
'''
Truth is the most valuable thing we have — so let us economize it.
— Mark Twain

''')

Multiline strings begin and end with '''.

Expressions

Branches, strings, and interpolations are expressions. A :def can attach an
expression to a name.

%-

4

(:def color
(:oneof
(| "yellow")
(| "blue")))

(:def adjective
(:oneof
(| "beautiful")
(| "auspicious")
(| color)))

(:def main
"What a ${adjective}, ${adjective} day!")

Branches can contain any expression, including names that have been defined
previously (such as color in the example above).

Lambdas

Lambdas are how we introduce functions in Dickinson.

(:def sayHello
(:lambda name text
"Hello, ${name}."))

Note that we have to specify the type of name - here, it stands in for some string,
so it is of type text.

We can use sayHello with $ (pronounced “apply”).

(:def name
(:oneof
(| "Alice")
(| "Bob")))

(:def main
($ sayHello name))

We can emd run this:

Hello, Bob.

$ f x corresponds to f x in ML.

Matches & Tuples

Suppose we want to randomly pick quotes. First we define a function to return
a quote by Fiona Apple:

5

(:def fionaAppleQuote
(:oneof
(|

'''
"You're more likely to get cut with a dull tool than a sharp one."
''')

(|
'''
"You forgot the difference between equanimity and passivity."
''')))

Then we can define quote, which returns a quote as well as the person who said
it.

(:def quote
(:oneof
(| ("« Le beau est ce qu'on désire sans vouloir le manger. »", "Simone Weil"))
(| (fionaAppleQuote, "Fiona Apple"))))

Each branch returns a tuple.

We can use the :match construct to format the result of quote, viz.

(:def formatQuote
(:lambda q (text, text)
(:match q
[(quote, name)

'''
${quote}

— ${name}
'''])))

(:def main
$ formatQuote quote)

We can emd run this:

"You forgot the difference between equanimity and passivity."
— Fiona Apple

Note the use of the :lambda in formatQuote; we specify the type (text, text).

Tags

Tags can be used to split things based on cases.

tydecl number = Singular | Plural

(:def indefiniteArticle

6

(:lambda n number
(:match n
[Singular "a"]
[Plural "some"])))

Note that we specify the type number in (:lambda n number ...).

Tags themselves must begin with a capital letter while types begin with a
lowercase letter.

Tags are a restricted form of sum types.

Types

REPL

To enter a REPL:

emd repl

This will show a prompt

emd>

If we have

%-

(:def gambling
(:oneof
(| "heads")
(| "tails")))

in a file gambling.dck as above, we can load it with

emd> :l gambling.dck

We can then evaluate gambling if we like

emd> gambling

or manipulate names that are in scope like so:

emd> "The result of the coin toss is: ${gambling}"

We can also create new definitions:

emd> (:def announcer "RESULT: ${gambling}")
emd> announcer

Inspect the type of an expression with :type:

7

emd> :type announcer
text

We can define types in the REPL:

emd> tydecl case = Nominative | Oblique | Possessive
emd> :type Nominative
case

Saving & Restoring States

We can save the REPL state, including any definitions we’ve declared during
the session.

emd> :save replSt.emdi

If we exit the session we can restore the save definitions with

emd> :r replSt.emdi
emd> announcer

For reference information about the Dickinson REPL:

:help

Builtins

Dickinson has several builtin functions. You can see all names in scope (including
builtins) with :list, viz.

emd> :list
oulipo
allCaps
capitalize
titleCase

We can inspect the type like defined names:

emd> :type allCaps
(-> text text)

Try it out:

emd> $ allCaps "Guilt and self-laceration are indulgences"
GUILT AND SELF-LACERATION ARE INDULGENCES

8

Lints

emd has a linter which can make suggestions based on probable mistakes. We
can invoke it with emd lint:

emd lint silly.dck

Libraries

Dickinson allows pulling in definitions from other files with :include.

Using Libraries

Example

The color module is bundled by default:

(:include color)

%-

(:def main
"Today's mood is ${color}")

Which gives:

Today's mood is citron

The :include must come before the %-; definitions come after the %-.

color.dck contains:

%-

(:def color
(:oneof
(| "aubergine")
(| "cerulean")
(| "azure")
...

Third-Party Libraries

Upon encountering :include animals.mammal, Dickinson looks for a file
animals/mammal.dck.

9

When invoking emd, we can use the --include flag to add directories to search.

Writing Libraries

Libraries can contain definitions and type declarations.

You can run emd check on a library file to validate it.

Scripting

emd ignores any lines staring with #!; put

#!/usr/bin/env emd

and the top of a file to use emd as an interpreter. As an example, here is an
implementation of the Unix fortune program as a script:

#!/usr/bin/env emd

%-

(:def adjective
(:oneof
(| "good")
(| "bad")))

(:def main
"You will have a ${adjective} day")

Examples

Cowsay

Here is a variation on cowsay:

(:def cowsay
(:lambda txt text

'''

${txt}

\ ^__^
\ (oo)_______

(__)\)\/\

10

||----w |
|| ||

'''))

Noun Declension

We can use tuples and tags to model nouns and noun declension.

tydecl case = Nominative | Accusative | Dative | Genitive | Instrumental

tydecl gender = Masculine | Feminine | Neuter

tydecl number = Singular | Plural

; demonstrative pronouns
; "this" or "these"
(:def decline
(:lambda x (case, gender, number)
(:match x
[(Nominative, Masculine, Singular) "þes"]
[(Accusative, Masculine, Singular) "þisne"]
[(Genitive, (Masculine|Neuter), Singular) "þisses"]
[(Dative, (Masculine|Neuter), Singular) "þissum"]
[(Instrumental, (Masculine|Neuter), Singular) "þys"]
[((Nominative|Accusative), Neuter, Singular) "þis"]
[(Nominative, Feminine, Singular) "þeos"]
[(Accusative, Feminine, Singular) "þas"]
[((Genitive|Dative|Instrumental), Feminine, Singular) "þisse"]
[((Nominative|Accusative), _, Plural) "þas"]
[(Genitive, _, Plural) "þissa"]
[(Dative, _, Plural) "þissum"]
)))

In the REPL:

emd> $ decline (Nominative, Feminine, Singular)
þeos

This actually has no element of randomness but such capabilities are important
for agreement in longer generative texts.

For guidance:

emd> :type decline
(-> (case, gender, number) text)

11

Shakespearean Insult Generator

Inspired by the Shakespeare Insult Kit’s insult table, we can generate our own
insults.

%-

(:def adjective
(:oneof
(| "artless")
(| "base-court")
(| "bawdy")
(| "bat-fowling")
...

(:def noun
(:oneof
(| "apple-john")
(| "baggage")
(| "barnacle")
(| "bladder")
...

(:def main
("Thou ${adjective} ${adjective} ${noun}!"))

Run it get something like:

Thou beslubbering clouted hedge-pig!

See the full example in examples/shakespeare.dck.

Lyrics Bot

Lyrics bots sample lyrics from some particular artist; see the africa by toto bot
for an example.

We can make our own Fiona Apple bot, viz.

%-

(:def fiona
(:oneof
(| "You forgot the difference between equanimity and passivity.")
(| "You're more likely to get cut with a dull tool than a sharp one.")
(| "The child is gone.")
(|

'''

12

http://web.mit.edu/dryfoo/Funny-pages/shakespeare-insult-kit.html
https://twitter.com/africabytotobot

Oh darling, it's so sweet
You think you know how crazy, how crazy I am.
''')

...

(:def main
fiona)

See the full example in examples/fionaBot.dck

13

	Introduction
	Installing Dickinson
	Editor Integration

	Program Structure
	Example
	Comments

	Definitions & Names
	Branching
	Interpolation
	Multi-Line Strings

	Expressions
	Lambdas
	Matches & Tuples
	Tags

	Types

	REPL
	Saving & Restoring States
	Builtins

	Lints
	Libraries
	Using Libraries
	Example
	Third-Party Libraries

	Writing Libraries

	Scripting
	Examples
	Cowsay
	Noun Declension
	Shakespearean Insult Generator
	Lyrics Bot

