module LinearScan.Lib where import qualified Prelude import qualified Data.IntMap import qualified Data.List import qualified Data.Ord import qualified Data.Functor.Identity import qualified LinearScan.Utils import qualified LinearScan.Specif as Specif import qualified LinearScan.Eqtype as Eqtype __ :: any __ = Prelude.error "Logical or arity value used" option_map :: (a1 -> a2) -> (Prelude.Maybe a1) -> Prelude.Maybe a2 option_map f x = case x of { Prelude.Just x0 -> Prelude.Just (f x0); Prelude.Nothing -> Prelude.Nothing} option_choose :: (Prelude.Maybe a1) -> (Prelude.Maybe a1) -> Prelude.Maybe a1 option_choose x y = case x of { Prelude.Just a -> x; Prelude.Nothing -> y} forFold :: a2 -> ([] a1) -> (a2 -> a1 -> a2) -> a2 forFold b v f = Data.List.foldl' f b v foldl_with_index :: (Prelude.Int -> a2 -> a1 -> a2) -> a2 -> ([] a1) -> a2 foldl_with_index f b v = let { go n xs z = case xs of { [] -> z; (:) y ys -> go ((Prelude.succ) n) ys (f n z y)}} in go 0 v b dep_foldl_inv :: (a1 -> Eqtype.Equality__Coq_type) -> a1 -> ([] Eqtype.Equality__Coq_sort) -> Prelude.Int -> (a1 -> [] Eqtype.Equality__Coq_sort) -> (a1 -> a1 -> () -> Eqtype.Equality__Coq_sort -> Eqtype.Equality__Coq_sort) -> (a1 -> () -> Eqtype.Equality__Coq_sort -> ([] Eqtype.Equality__Coq_sort) -> () -> Specif.Coq_sig2 a1) -> a1 dep_foldl_inv e b v n q f f0 = let {filtered_var = (,) v n} in case filtered_var of { (,) l n0 -> case l of { [] -> b; (:) y ys -> (\fO fS n -> if n Prelude.<= 0 then fO () else fS (n Prelude.- 1)) (\_ -> b) (\n' -> let {filtered_var0 = f0 b __ y ys __} in let {ys' = Prelude.map (f b filtered_var0 __) ys} in dep_foldl_inv e filtered_var0 ys' n' q f f0) n0}} dep_foldl_invE :: (a2 -> Eqtype.Equality__Coq_type) -> a2 -> ([] Eqtype.Equality__Coq_sort) -> Prelude.Int -> (a2 -> [] Eqtype.Equality__Coq_sort) -> (a2 -> a2 -> () -> Eqtype.Equality__Coq_sort -> Eqtype.Equality__Coq_sort) -> (a2 -> () -> Eqtype.Equality__Coq_sort -> ([] Eqtype.Equality__Coq_sort) -> () -> Prelude.Either a1 (Specif.Coq_sig2 a2)) -> Prelude.Either a1 a2 dep_foldl_invE e b v n q f f0 = let {filtered_var = (,) v n} in case filtered_var of { (,) l n0 -> case l of { [] -> Prelude.Right b; (:) y ys -> (\fO fS n -> if n Prelude.<= 0 then fO () else fS (n Prelude.- 1)) (\_ -> Prelude.Right b) (\n' -> let {filtered_var0 = f0 b __ y ys __} in case filtered_var0 of { Prelude.Left err -> Prelude.Left err; Prelude.Right s -> let {ys' = Prelude.map (f b s __) ys} in dep_foldl_invE e s ys' n' q f f0}) n0}}