module ListT ( ListT(..), -- * Execution utilities uncons, head, tail, null, alternate, alternateHoisting, fold, foldMaybe, applyFoldM, toList, toReverseList, traverse_, splitAt, -- * Construction utilities cons, fromFoldable, fromMVar, unfold, unfoldM, repeat, -- * Transformation utilities -- | -- These utilities only accumulate the transformations -- without actually traversing the stream. -- They only get applied in a single traversal, -- which only happens at the execution. traverse, take, drop, slice, ) where import ListT.Prelude hiding (uncons, toList, yield, fold, traverse, head, tail, take, drop, repeat, null, traverse_, splitAt) import Control.Monad -- | -- A proper implementation of the list monad-transformer. -- Useful for streaming of monadic data structures. -- -- Since it has instances of 'MonadPlus' and 'Alternative', -- you can use general utilities packages like -- -- with it. newtype ListT m a = ListT (m (Maybe (a, ListT m a))) deriving (Foldable, Traversable, Generic) deriving instance Show (m (Maybe (a, ListT m a))) => Show (ListT m a) deriving instance Read (m (Maybe (a, ListT m a))) => Read (ListT m a) deriving instance Eq (m (Maybe (a, ListT m a))) => Eq (ListT m a) deriving instance Ord (m (Maybe (a, ListT m a))) => Ord (ListT m a) deriving instance (Typeable m, Typeable a, Data (m (Maybe (a, ListT m a)))) => Data (ListT m a) instance Eq1 m => Eq1 (ListT m) where liftEq eq = go where go (ListT m) (ListT n) = liftEq (liftEq (\(a, as) (b, bs) -> eq a b && go as bs)) m n instance Ord1 m => Ord1 (ListT m) where liftCompare cmp = go where go (ListT m) (ListT n) = liftCompare (liftCompare (\(a, as) (b, bs) -> cmp a b <> go as bs)) m n instance Show1 m => Show1 (ListT m) where -- I wish I were joking. liftShowsPrec sp (sl :: [a] -> ShowS) = mark where bob :: Int -> m (Maybe (a, ListT m a)) -> ShowS bob = liftShowsPrec jill edith edith :: [Maybe (a, ListT m a)] -> ShowS edith = liftShowList jack martha jill :: Int -> Maybe (a, ListT m a) -> ShowS jill = liftShowsPrec jack martha martha :: [(a, ListT m a)] -> ShowS martha = liftShowList2 sp sl mark juan mark :: Int -> ListT m a -> ShowS mark d (ListT m) = showsUnaryWith bob "ListT" d m juan :: [ListT m a] -> ShowS juan = liftShowList sp sl jack :: Int -> (a, ListT m a) -> ShowS jack = liftShowsPrec2 sp sl mark juan instance Monad m => Semigroup (ListT m a) where (<>) (ListT m1) (ListT m2) = ListT $ m1 >>= \case Nothing -> m2 Just (h1, s1') -> return (Just (h1, ((<>) s1' (ListT m2)))) instance Monad m => Monoid (ListT m a) where mempty = ListT $ return Nothing mappend = (<>) instance Functor m => Functor (ListT m) where fmap f = go where go = ListT . (fmap . fmap) (bimapPair' f go) . uncons instance (Monad m, Functor m) => Applicative (ListT m) where pure = return (<*>) = ap -- This is just like liftM2, but it uses fmap over the second -- action. liftM2 can't do that, because it has to deal with -- the possibility that someone defines liftA2 = liftM2 and -- fmap f = (pure f <*>) (leaving (<*>) to the default). liftA2 f m1 m2 = do x1 <- m1 fmap (f x1) m2 (*>) = (>>) instance (Monad m, Functor m) => Alternative (ListT m) where empty = inline mempty (<|>) = inline mappend instance Monad m => Monad (ListT m) where return a = ListT $ return (Just (a, (ListT (return Nothing)))) -- We use a go function so GHC can inline k2 -- if it likes. (>>=) s10 k2 = go s10 where go s1 = ListT $ uncons s1 >>= \case Nothing -> return Nothing Just (h1, t1) -> uncons $ k2 h1 <> go t1 instance Monad m => MonadFail (ListT m) where fail _ = inline mempty instance Monad m => MonadPlus (ListT m) where mzero = inline mempty mplus = inline mappend instance MonadTrans ListT where lift = ListT . fmap (\a -> Just (a, mempty)) instance MonadIO m => MonadIO (ListT m) where liftIO = lift . liftIO instance MFunctor ListT where hoist f = go where go = ListT . f . (fmap . fmap) (bimapPair' id go) . uncons instance MMonad ListT where embed f (ListT m) = f m >>= \case Nothing -> mzero Just (h, t) -> ListT $ return $ Just $ (h, embed f t) instance MonadBase b m => MonadBase b (ListT m) where liftBase = lift . liftBase instance MonadBaseControl b m => MonadBaseControl b (ListT m) where type StM (ListT m) a = StM m (Maybe (a, ListT m a)) liftBaseWith runToBase = lift $ liftBaseWith $ \runInner -> runToBase $ runInner . uncons restoreM inner = lift (restoreM inner) >>= \case Nothing -> mzero Just (h, t) -> cons h t instance MonadError e m => MonadError e (ListT m) where throwError = ListT . throwError catchError m handler = ListT $ catchError (uncons m) $ uncons . handler instance MonadReader e m => MonadReader e (ListT m) where ask = lift ask reader = lift . reader local r = go where go (ListT m) = ListT $ local r (fmap (fmap (secondPair' go)) m) instance MonadState e m => MonadState e (ListT m) where get = lift get put = lift . put state = lift . state instance Monad m => MonadLogic (ListT m) where msplit (ListT m) = lift m interleave m1 m2 = ListT $ uncons m1 >>= \case Nothing -> uncons m2 Just (a, m1') -> uncons $ cons a (interleave m2 m1') m >>- f = ListT $ uncons m >>= \case Nothing -> uncons empty Just (a, m') -> uncons $ interleave (f a) (m' >>- f) ifte t th el = ListT $ uncons t >>= \case Nothing -> uncons el Just (a,m) -> uncons $ th a <|> (m >>= th) once (ListT m) = ListT $ m >>= \case Nothing -> uncons empty Just (a, _) -> uncons (return a) lnot (ListT m) = ListT $ m >>= \case Nothing -> uncons (return ()) Just _ -> uncons empty instance MonadZip m => MonadZip (ListT m) where mzipWith f = go where go (ListT m1) (ListT m2) = ListT $ mzipWith (mzipWith $ \(a, as) (b, bs) -> (f a b, go as bs)) m1 m2 munzip (ListT m) | (l, r) <- munzip (fmap go m) = (ListT l, ListT r) where go Nothing = (Nothing, Nothing) go (Just ((a, b), listab)) = (Just (a, la), Just (b, lb)) where -- If the underlying munzip is careful not to leak memory, then we -- don't want to defeat it. We need to be sure that la and lb are -- realized as selector thunks. {-# NOINLINE remains #-} {-# NOINLINE la #-} {-# NOINLINE lb #-} remains = munzip listab (la, lb) = remains -- * Execution in the inner monad ------------------------- -- | -- Execute in the inner monad, -- getting the head and the tail. -- Returns nothing if it's empty. uncons :: ListT m a -> m (Maybe (a, ListT m a)) uncons (ListT m) = m -- | -- Execute, getting the head. Returns nothing if it's empty. {-# INLINABLE head #-} head :: Monad m => ListT m a -> m (Maybe a) head = fmap (fmap fst) . uncons -- | -- Execute, getting the tail. Returns nothing if it's empty. {-# INLINABLE tail #-} tail :: Monad m => ListT m a -> m (Maybe (ListT m a)) tail = fmap (fmap snd) . uncons -- | -- Execute, checking whether it's empty. {-# INLINABLE null #-} null :: Monad m => ListT m a -> m Bool null = fmap (maybe True (const False)) . uncons -- | -- Execute in the inner monad, -- using its '(<|>)' function on each entry. {-# INLINABLE alternate #-} alternate :: (Alternative m, Monad m) => ListT m a -> m a alternate (ListT m) = m >>= \case Nothing -> empty Just (a, as) -> pure a <|> alternate as -- | -- Use a monad morphism to convert a 'ListT' to a similar -- monad, such as '[]'. -- -- A more efficient alternative to @'alternate' . 'hoist' f@. {-# INLINABLE alternateHoisting #-} alternateHoisting :: (Monad n, Alternative n) => (forall a. m a -> n a) -> ListT m a -> n a alternateHoisting f = go where go (ListT m) = f m >>= \case Nothing -> empty Just (a, as) -> pure a <|> go as -- | -- Execute, applying a left fold. {-# INLINABLE fold #-} fold :: Monad m => (r -> a -> m r) -> r -> ListT m a -> m r fold s r = uncons >=> maybe (return r) (\(h, t) -> s r h >>= \r' -> fold s r' t) -- | -- A version of 'fold', which allows early termination. {-# INLINABLE foldMaybe #-} foldMaybe :: Monad m => (r -> a -> m (Maybe r)) -> r -> ListT m a -> m r foldMaybe s r l = fmap (maybe r id) $ runMaybeT $ do (h, t) <- MaybeT $ uncons l r' <- MaybeT $ s r h lift $ foldMaybe s r' t -- | -- Apply a left fold abstraction from the \"foldl\" package. applyFoldM :: Monad m => FoldM m i o -> ListT m i -> m o applyFoldM (FoldM step init extract) lt = do a <- init b <- fold step a lt extract b -- | -- Execute, folding to a list. {-# INLINABLE toList #-} toList :: Monad m => ListT m a -> m [a] toList = liftM ($ []) . fold (\f e -> return $ f . (e :)) id -- | -- Execute, folding to a list in the reverse order. -- Performs more efficiently than 'toList'. {-# INLINABLE toReverseList #-} toReverseList :: Monad m => ListT m a -> m [a] toReverseList = ListT.fold (\l -> return . (:l)) [] -- | -- Execute, traversing the stream with a side effect in the inner monad. {-# INLINABLE traverse_ #-} traverse_ :: Monad m => (a -> m ()) -> ListT m a -> m () traverse_ f = fold (const f) () -- | -- Execute, consuming a list of the specified length and returning the remainder stream. {-# INLINABLE splitAt #-} splitAt :: Monad m => Int -> ListT m a -> m ([a], ListT m a) splitAt = \case n | n > 0 -> \l -> uncons l >>= \case Nothing -> return ([], mzero) Just (h, t) -> do (r1, r2) <- splitAt (pred n) t return (h : r1, r2) _ -> \l -> return ([], l) -- * Construction ------------------------- -- | -- Prepend an element. cons :: Monad m => a -> ListT m a -> ListT m a cons h t = ListT $ return (Just (h, t)) -- | -- Construct from any foldable. {-# INLINABLE fromFoldable #-} fromFoldable :: (Monad m, Foldable f) => f a -> ListT m a fromFoldable = foldr cons mzero -- | -- Construct from an MVar, interpreting the value of Nothing as the end. fromMVar :: (MonadIO m) => MVar (Maybe a) -> ListT m a fromMVar v = fix $ \loop -> liftIO (takeMVar v) >>= maybe mzero (flip cons loop) -- | -- Construct by unfolding a pure data structure. {-# INLINABLE unfold #-} unfold :: Monad m => (b -> Maybe (a, b)) -> b -> ListT m a unfold f s = maybe mzero (\(h, t) -> cons h (unfold f t)) (f s) -- | -- Construct by unfolding a monadic data structure -- -- This is the most memory-efficient way to construct ListT where -- the length depends on the inner monad. {-# INLINABLE unfoldM #-} unfoldM :: Monad m => (b -> m (Maybe (a, b))) -> b -> ListT m a unfoldM f = go where go s = ListT $ f s >>= \case Nothing -> return Nothing Just (a,r) -> return (Just (a, go r)) -- | -- Produce an infinite stream. {-# INLINABLE repeat #-} repeat :: Monad m => a -> ListT m a repeat = fix . cons -- * Transformation ------------------------- -- | -- A transformation, -- which traverses the stream with an action in the inner monad. {-# INLINABLE traverse #-} traverse :: Monad m => (a -> m b) -> ListT m a -> ListT m b traverse f s = lift (uncons s) >>= mapM (\(h, t) -> lift (f h) >>= \h' -> cons h' (traverse f t)) >>= maybe mzero return -- | -- A transformation, -- reproducing the behaviour of @Data.List.'Data.List.take'@. {-# INLINABLE take #-} take :: Monad m => Int -> ListT m a -> ListT m a take = \case n | n > 0 -> \t -> lift (uncons t) >>= \case Nothing -> t Just (h, t) -> cons h (take (pred n) t) _ -> const $ mzero -- | -- A transformation, -- reproducing the behaviour of @Data.List.'Data.List.drop'@. {-# INLINABLE drop #-} drop :: Monad m => Int -> ListT m a -> ListT m a drop = \case n | n > 0 -> lift . uncons >=> maybe mzero (drop (pred n) . snd) _ -> id -- | -- A transformation, -- which slices a list into chunks of the specified length. {-# INLINABLE slice #-} slice :: Monad m => Int -> ListT m a -> ListT m [a] slice n l = do (h, t) <- lift $ splitAt n l case h of [] -> mzero _ -> cons h (slice n t)