{-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} {- | Useful control structures additionally to those in "LLVM.Util.Loop". -} module LLVM.Extra.Control ( arrayLoop, arrayLoopWithExit, arrayLoop2WithExit, whileLoop, ifThenElse, ifThen, Select(select), selectTraversable, ifThenSelect, ) where import LLVM.Extra.Arithmetic (icmp, sub, dec, advanceArrayElementPtr, ) import qualified LLVM.Core as LLVM import LLVM.Core (getCurrentBasicBlock, newBasicBlock, defineBasicBlock, br, condBr, Ptr, Value, value, phi, addPhiInputs, IntPredicate(IntNE), CmpRet, IsInteger, IsType, IsConst, IsFirstClass, CodeGenFunction, CodeGenModule, newModule, defineModule, writeBitcodeToFile, ) import LLVM.Util.Loop (Phi, phis, addPhis, ) import qualified Control.Applicative as App import qualified Data.Traversable as Trav import Control.Monad (liftM3, liftM2, ) import Data.Tuple.HT (mapSnd, ) -- * control structures {- I had to export Phi's methods in llvm-0.6.8 in order to be able to implement this function. -} arrayLoop :: (Phi a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i Bool) => Value i -> Value (Ptr b) -> a -> (Value (Ptr b) -> a -> CodeGenFunction r a) -> CodeGenFunction r a arrayLoop len ptr start loopBody = do top <- getCurrentBasicBlock loop <- newBasicBlock body <- newBasicBlock exit <- newBasicBlock br loop defineBasicBlock loop i <- phi [(len, top)] p <- phi [(ptr, top)] vars <- phis top start t <- icmp IntNE i (value LLVM.zero) condBr t body exit defineBasicBlock body vars' <- loopBody p vars i' <- dec i p' <- advanceArrayElementPtr p body' <- getCurrentBasicBlock addPhis body' vars vars' addPhiInputs i [(i', body')] addPhiInputs p [(p', body')] br loop defineBasicBlock exit return vars arrayLoopWithExit :: (Phi s, IsType a, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i Bool) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) arrayLoopWithExit len ptr start loopBody = do top <- getCurrentBasicBlock loop <- newBasicBlock body <- newBasicBlock next <- newBasicBlock exit <- newBasicBlock br loop defineBasicBlock loop i <- phi [(len, top)] p <- phi [(ptr, top)] vars <- phis top start t <- icmp IntNE i (value LLVM.zero) condBr t body exit defineBasicBlock body (cont, vars') <- loopBody p vars addPhis next vars vars' condBr cont next exit defineBasicBlock next i' <- dec i p' <- advanceArrayElementPtr p addPhiInputs i [(i', next)] addPhiInputs p [(p', next)] br loop defineBasicBlock exit pos <- sub len i return (pos, vars) {- | An alternative to 'arrayLoopWithExit' where I try to persuade LLVM to use x86's LOOP instruction. Unfortunately it becomes even worse. LLVM developers say that x86 LOOP is actually slower than manual decrement, zero test and conditional branch. -} _arrayLoopWithExitDecLoop :: (Phi a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i Bool) => Value i -> Value (Ptr b) -> a -> (Value (Ptr b) -> a -> CodeGenFunction r (Value Bool, a)) -> CodeGenFunction r (Value i, a) _arrayLoopWithExitDecLoop len ptr start loopBody = do top <- getCurrentBasicBlock checkEnd <- newBasicBlock loop <- newBasicBlock next <- newBasicBlock exit <- newBasicBlock {- unfortunately, t0 is not just stored as processor flag but is written to a register and then tested again in checkEnd -} t0 <- icmp IntNE len (value LLVM.zero) br checkEnd defineBasicBlock checkEnd i <- phi [(len, top)] p <- phi [(ptr, top)] vars <- phis top start t <- phi [(t0, top)] condBr t loop exit defineBasicBlock loop (cont, vars') <- loopBody p vars addPhis next vars vars' condBr cont next exit defineBasicBlock next p' <- advanceArrayElementPtr p i' <- dec i t' <- icmp IntNE i' (value LLVM.zero) addPhiInputs i [(i', next)] addPhiInputs p [(p', next)] addPhiInputs t [(t', next)] br checkEnd defineBasicBlock exit pos <- sub len i return (pos, vars) arrayLoop2WithExit :: (Phi s, IsType a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) arrayLoop2WithExit len ptrA ptrB start loopBody = fmap (mapSnd snd) $ arrayLoopWithExit len ptrA (ptrB,start) (\ptrAi (ptrBi,s0) -> do (cont, s1) <- loopBody ptrAi ptrBi s0 ptrBi' <- advanceArrayElementPtr ptrBi return (cont, (ptrBi',s1))) whileLoop :: Phi a => a -> (a -> CodeGenFunction r (Value Bool)) -> (a -> CodeGenFunction r a) -> CodeGenFunction r a whileLoop start check body = do top <- getCurrentBasicBlock loop <- newBasicBlock cont <- newBasicBlock exit <- newBasicBlock br loop defineBasicBlock loop state <- phis top start b <- check state condBr b cont exit defineBasicBlock cont res <- body state cont' <- getCurrentBasicBlock addPhis cont' state res br loop defineBasicBlock exit return state {- | This construct starts new blocks, so be prepared when continueing after an 'ifThenElse'. -} ifThenElse :: Phi a => Value Bool -> CodeGenFunction r a -> CodeGenFunction r a -> CodeGenFunction r a ifThenElse cond thenCode elseCode = do thenBlock <- newBasicBlock elseBlock <- newBasicBlock mergeBlock <- newBasicBlock condBr cond thenBlock elseBlock defineBasicBlock thenBlock a0 <- thenCode thenBlock' <- getCurrentBasicBlock br mergeBlock defineBasicBlock elseBlock a1 <- elseCode elseBlock' <- getCurrentBasicBlock br mergeBlock defineBasicBlock mergeBlock a2 <- phis thenBlock' a0 addPhis elseBlock' a2 a1 return a2 ifThen :: Phi a => Value Bool -> a -> CodeGenFunction r a -> CodeGenFunction r a ifThen cond deflt thenCode = do defltBlock <- getCurrentBasicBlock thenBlock <- newBasicBlock mergeBlock <- newBasicBlock condBr cond thenBlock mergeBlock defineBasicBlock thenBlock a0 <- thenCode thenBlock' <- getCurrentBasicBlock br mergeBlock defineBasicBlock mergeBlock a1 <- phis defltBlock deflt addPhis thenBlock' a1 a0 return a1 class Phi a => Select a where select :: Value Bool -> a -> a -> CodeGenFunction r a instance (IsFirstClass a, CmpRet a Bool) => Select (Value a) where select = LLVM.select instance Select () where select _ () () = return () instance (Select a, Select b) => Select (a,b) where select cond (a0,b0) (a1,b1) = liftM2 (,) (select cond a0 a1) (select cond b0 b1) instance (Select a, Select b, Select c) => Select (a,b,c) where select cond (a0,b0,c0) (a1,b1,c1) = liftM3 (,,) (select cond a0 a1) (select cond b0 b1) (select cond c0 c1) selectTraversable :: (Select a, Trav.Traversable f, App.Applicative f) => Value Bool -> f a -> f a -> CodeGenFunction r (f a) selectTraversable b x y = Trav.sequence (App.liftA2 (select b) x y) {- | Branch-free variant of 'ifThen' that is faster if the enclosed block is very simply, say, if it contains at most two instructions. It can only be used as alternative to 'ifThen' if the enclosed block is free of side effects. -} ifThenSelect :: Select a => Value Bool -> a -> CodeGenFunction r a -> CodeGenFunction r a ifThenSelect cond deflt thenCode = do thenResult <- thenCode select cond thenResult deflt -- * debugging _emitCode :: FilePath -> CodeGenModule a -> IO () _emitCode fileName cgm = do m <- newModule _ <- defineModule m cgm writeBitcodeToFile fileName m