-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Utility functions for the llvm interface -- -- The Low-Level Virtual-Machine is a compiler back-end with optimizer. -- You may also call it a high-level portable assembler. This package -- provides various utility functions for the Haskell interface to LLVM, -- for example: -- --
-- newtype Fixed = Fixed Int32 ---- -- and then use the same methods for floating point and fixed point -- arithmetic. -- -- In contrast to the arithmetic methods in the llvm wrapper, in -- our methods the types of operands and result match. Advantage: Type -- inference determines most of the types automatically. Disadvantage: -- You cannot use constant values directly, but you have to convert them -- all to Value. class Zero a => Additive a zero :: Additive a => a add :: Additive a => a -> a -> CodeGenFunction r a sub :: Additive a => a -> a -> CodeGenFunction r a neg :: Additive a => a -> CodeGenFunction r a one :: IntegerConstant a => a inc :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) dec :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) class Additive a => PseudoRing a mul :: PseudoRing a => a -> a -> CodeGenFunction r a square :: PseudoRing a => a -> CodeGenFunction r a class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => Scalar v -> v -> CodeGenFunction r v class PseudoRing a => Field a fdiv :: Field a => a -> a -> CodeGenFunction r a class IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> a -- | In Haskell terms this is a quot. idiv :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) irem :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> a -> a -> CodeGenFunction r (CmpResult a) class Comparison a where type family CmpResult a :: * cmp :: Comparison a => CmpPredicate -> a -> a -> CodeGenFunction r (CmpResult a) data CmpPredicate :: * CmpEQ :: CmpPredicate CmpNE :: CmpPredicate CmpGT :: CmpPredicate CmpGE :: CmpPredicate CmpLT :: CmpPredicate CmpLE :: CmpPredicate class Logic a and :: Logic a => a -> a -> CodeGenFunction r a or :: Logic a => a -> a -> CodeGenFunction r a xor :: Logic a => a -> a -> CodeGenFunction r a inv :: Logic a => a -> CodeGenFunction r a class Additive a => Real a min :: Real a => a -> a -> CodeGenFunction r a max :: Real a => a -> a -> CodeGenFunction r a abs :: Real a => a -> CodeGenFunction r a signum :: Real a => a -> CodeGenFunction r a class Real a => Fraction a truncate :: Fraction a => a -> CodeGenFunction r a fraction :: Fraction a => a -> CodeGenFunction r a signedFraction :: Fraction a => a -> CodeGenFunction r a addToPhase :: Fraction a => a -> a -> CodeGenFunction r a -- | both increment and phase must be non-negative incPhase :: Fraction a => a -> a -> CodeGenFunction r a advanceArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) decreaseArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) class Field a => Algebraic a sqrt :: Algebraic a => a -> CodeGenFunction r a class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r a sin, log, exp, cos :: Transcendental a => a -> CodeGenFunction r a pow :: Transcendental a => a -> a -> CodeGenFunction r a instance (IsFloating a, TranscendentalConstant a) => Transcendental (Value a) instance IsFloating a => Algebraic (Value a) instance IsInteger a => Logic (ConstValue a) instance IsInteger a => Logic (Value a) instance (IsFloating a, CmpRet a) => FloatingComparison (ConstValue a) instance (IsFloating a, CmpRet a) => FloatingComparison (Value a) instance CmpRet a => Comparison (ConstValue a) instance CmpRet a => Comparison (Value a) instance Fraction a => Fraction (Value a) instance Real a => Real (Value a) instance RationalConstant a => RationalConstant (Value a) instance RationalConstant a => RationalConstant (ConstValue a) instance IsFloating v => Field (ConstValue v) instance IsFloating v => Field (Value v) instance IntegerConstant a => IntegerConstant (Value a) instance IntegerConstant a => IntegerConstant (ConstValue a) instance PseudoModule v => PseudoModule (ConstValue v) instance PseudoModule v => PseudoModule (Value v) instance IsArithmetic v => PseudoRing (ConstValue v) instance IsArithmetic v => PseudoRing (Value v) instance (Additive a, Additive b, Additive c) => Additive (a, b, c) instance (Additive a, Additive b) => Additive (a, b) instance IsArithmetic a => Additive (ConstValue a) instance IsArithmetic a => Additive (Value a) module LLVM.Extra.Scalar -- | The entire purpose of this datatype is to mark a type as scalar, -- although it might also be interpreted as vector. This way you can -- write generic operations for vectors using the PseudoModule -- class, and specialise them to scalar types with respect to the -- PseudoRing class. From another perspective you can consider the -- T type constructor a marker where the Scalar type -- function stops reducing nested vector types to scalar types. newtype T a Cons :: a -> T a decons :: T a -> a liftM :: Monad m => (a -> m b) -> T a -> m (T b) liftM2 :: Monad m => (a -> b -> m c) -> T a -> T b -> m (T c) unliftM :: Monad m => (T a -> m (T r)) -> a -> m r unliftM2 :: Monad m => (T a -> T b -> m (T r)) -> a -> b -> m r unliftM3 :: Monad m => (T a -> T b -> T c -> m (T r)) -> a -> b -> c -> m r unliftM4 :: Monad m => (T a -> T b -> T c -> T d -> m (T r)) -> a -> b -> c -> d -> m r unliftM5 :: Monad m => (T a -> T b -> T c -> T d -> T e -> m (T r)) -> a -> b -> c -> d -> e -> m r instance Transcendental a => Transcendental (T a) instance Algebraic a => Algebraic (T a) instance Fraction a => Fraction (T a) instance Real a => Real (T a) instance PseudoRing a => PseudoModule (T a) instance Field a => Field (T a) instance PseudoRing a => PseudoRing (T a) instance Additive a => Additive (T a) instance RationalConstant a => RationalConstant (T a) instance IntegerConstant a => IntegerConstant (T a) instance Phi a => Phi (T a) instance Undefined a => Undefined (T a) instance Zero a => Zero (T a) -- | Maybe transformer datatype implemented in continuation passing style. module LLVM.Extra.MaybeContinuation -- | Isomorphic to ReaderT (CodeGenFunction r z) (ContT z -- (CodeGenFunction r)) a, where the reader provides the block for -- Nothing and the continuation part manages the Just. newtype T r z a Cons :: (CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z) -> T r z a resolve :: T r z a -> CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z map :: (a -> CodeGenFunction r b) -> T r z a -> T r z b -- | counterpart to Data.Maybe.HT.toMaybe withBool :: Phi z => Value Bool -> CodeGenFunction r a -> T r z a fromBool :: Phi z => CodeGenFunction r (Value Bool, a) -> T r z a toBool :: Undefined a => T r (Value Bool, a) a -> CodeGenFunction r (Value Bool, a) fromPlainMaybe :: Phi z => T a -> T r z a fromMaybe :: Phi z => CodeGenFunction r (T a) -> T r z a toMaybe :: Undefined a => T r (T a) a -> CodeGenFunction r (T a) isJust :: T r (Value Bool) a -> CodeGenFunction r (Value Bool) lift :: CodeGenFunction r a -> T r z a guard :: Phi z => Value Bool -> T r z () just :: a -> T r z a nothing :: T r z a bind :: T r z a -> (a -> T r z b) -> T r z b -- | Run an exception handler if the Maybe-action fails. The exception is -- propagated. That is, the handler is intended for a cleanup procedure. onFail :: CodeGenFunction r () -> T r z a -> T r z a -- | Run the first action and if that fails run the second action. If both -- actions fail, then the composed action fails, too. alternative :: (Phi z, Undefined a) => T r (T a) a -> T r (T a) a -> T r z a fixedLengthLoop :: (Phi s, Undefined s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> s -> (s -> T r (T s) s) -> CodeGenFunction r (Value i, T s) -- | If the returned position is smaller than the array size, then returned -- final state is nothing. arrayLoop :: (Phi s, Undefined s, IsType a, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> T r (T (Value (Ptr a), s)) s) -> CodeGenFunction r (Value i, T s) arrayLoop2 :: (Phi s, Undefined s, IsType a, IsType b, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> T r (T (Value (Ptr a), (Value (Ptr b), s))) s) -> CodeGenFunction r (Value i, T s) instance MonadIO (T r z) instance Monad (T r z) instance Applicative (T r z) instance Functor (T r z) module LLVM.Extra.Multi.Vector newtype T n a Cons :: (VectorValueOf n a) -> T n a consPrim :: VectorValueOf n a ~ Value n a => Value (Vector n a) -> T n a deconsPrim :: VectorValueOf n a ~ Value n a => T n a -> Value (Vector n a) class C a => C a cons :: (C a, Positive n) => Vector n a -> T n a undef :: (C a, Positive n) => T n a zero :: (C a, Positive n) => T n a phi :: (C a, Positive n) => BasicBlock -> T n a -> CodeGenFunction r (T n a) addPhi :: (C a, Positive n) => BasicBlock -> T n a -> T n a -> CodeGenFunction r () shuffle :: (C a, Positive n, Positive m) => ConstValue (Vector m Word32) -> T n a -> T n a -> CodeGenFunction r (T m a) extract :: (C a, Positive n) => Value Word32 -> T n a -> CodeGenFunction r (T a) insert :: (C a, Positive n) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) type Value n a = Value (Vector n a) map :: (Positive n, C a, C b) => (T a -> CodeGenFunction r (T b)) -> (T n a -> CodeGenFunction r (T n b)) zip :: T n a -> T n b -> T n (a, b) zip3 :: T n a -> T n b -> T n c -> T n (a, b, c) unzip :: T n (a, b) -> (T n a, T n b) unzip3 :: T n (a, b, c) -> (T n a, T n b, T n c) replicate :: (Positive n, C a) => T a -> CodeGenFunction r (T n a) iterate :: (Positive n, C a) => (T a -> CodeGenFunction r (T a)) -> T a -> CodeGenFunction r (T n a) take :: (Positive n, Positive m, C a) => T n a -> CodeGenFunction r (T m a) takeRev :: (Positive n, Positive m, C a) => T n a -> CodeGenFunction r (T m a) lift1 :: (VectorValueOf n a -> VectorValueOf n b) -> T n a -> T n b modify :: (Positive n, C a) => Value Word32 -> (T a -> CodeGenFunction r (T a)) -> (T n a -> CodeGenFunction r (T n a)) assemble :: (Positive n, C a) => [T a] -> CodeGenFunction r (T n a) dissect :: (Positive n, C a) => T n a -> CodeGenFunction r [T a] dissectList :: (Positive n, C a) => T n a -> [CodeGenFunction r (T a)] reverse :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) -- | Rotate one element towards the higher elements. -- -- I don't want to call it rotateLeft or rotateRight, because there is no -- prefered layout for the vector elements. In Intel's instruction manual -- vector elements are indexed like the bits, that is from right to left. -- However, when working with Haskell list and enumeration syntax, the -- start index is left. rotateUp :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) rotateDown :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) shiftUp :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftDown :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftUpMultiZero :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftDownMultiZero :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftUpMultiUndef :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftDownMultiUndef :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) undefPrimitive :: (Positive n, IsPrimitive al, VectorValueOf n a ~ Value n al) => T n a shufflePrimitive :: (Positive n, Positive m, IsPrimitive al, ValueOf a ~ Value al, VectorValueOf n a ~ Value n al, VectorValueOf m a ~ Value m al) => ConstValue (Vector m Word32) -> T n a -> T n a -> CodeGenFunction r (T m a) extractPrimitive :: (Positive n, IsPrimitive al, ValueOf a ~ Value al, VectorValueOf n a ~ Value n al) => Value Word32 -> T n a -> CodeGenFunction r (T a) insertPrimitive :: (Positive n, IsPrimitive al, ValueOf a ~ Value al, VectorValueOf n a ~ Value n al) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) shuffleMatchTraversable :: (Positive n, C a, Traversable f) => ConstValue (Vector n Word32) -> f (T n a) -> CodeGenFunction r (f (T n a)) insertTraversable :: (Positive n, C a, Traversable f, Applicative f) => Value Word32 -> f (T a) -> f (T n a) -> CodeGenFunction r (f (T n a)) extractTraversable :: (Positive n, C a, Traversable f) => Value Word32 -> f (T n a) -> CodeGenFunction r (f (T a)) class (IntegerConstant a, C a) => IntegerConstant a fromInteger' :: (IntegerConstant a, Positive n) => Integer -> T n a class (RationalConstant a, IntegerConstant a) => RationalConstant a fromRational' :: (RationalConstant a, Positive n) => Rational -> T n a class (Additive a, C a) => Additive a add :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) sub :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) neg :: (Additive a, Positive n) => T n a -> CodeGenFunction r (T n a) class (PseudoRing a, Additive a) => PseudoRing a mul :: (PseudoRing a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (Field a, PseudoRing a) => Field a fdiv :: (Field a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (PseudoModule v, PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: (PseudoModule v, Positive n) => T n (Scalar v) -> T n v -> CodeGenFunction r (T n v) class (Real a, Additive a) => Real a min :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) max :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) abs :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) signum :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Fraction a, Real a) => Fraction a truncate :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) fraction :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Algebraic a, Field a) => Algebraic a sqrt :: (Algebraic a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Transcendental a, Algebraic a) => Transcendental a pi :: (Transcendental a, Positive n) => CodeGenFunction r (T n a) sin, log, exp, cos :: (Transcendental a, Positive n) => T n a -> CodeGenFunction r (T n a) pow :: (Transcendental a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (FloatingComparison a, Comparison a) => FloatingComparison a fcmp :: (FloatingComparison a, Positive n) => FPPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class (Select a, C a) => Select a select :: (Select a, Positive n) => T n Bool -> T n a -> T n a -> CodeGenFunction r (T n a) class (Comparison a, C a) => Comparison a cmp :: (Comparison a, Positive n) => CmpPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class (Logic a, C a) => Logic a and :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) or :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) xor :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) inv :: (Logic a, Positive n) => T n a -> CodeGenFunction r (T n a) class (BitShift a, C a) => BitShift a shl :: (BitShift a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) shr :: (BitShift a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) instance BitShift Int64 instance BitShift Int32 instance BitShift Int16 instance BitShift Int8 instance BitShift Int instance BitShift Word64 instance BitShift Word32 instance BitShift Word16 instance BitShift Word8 instance BitShift Word instance (Positive n, Logic a) => Logic (T n a) instance Logic Word64 instance Logic Word32 instance Logic Word16 instance Logic Word8 instance Logic Bool instance (Positive n, FloatingComparison a) => FloatingComparison (T n a) instance FloatingComparison Float instance (Positive n, Comparison a) => Comparison (T n a) instance Comparison Int64 instance Comparison Int32 instance Comparison Int16 instance Comparison Int8 instance Comparison Int instance Comparison Word64 instance Comparison Word32 instance Comparison Word16 instance Comparison Word8 instance Comparison Word instance Comparison Double instance Comparison Float instance (Select a, Select b, Select c) => Select (a, b, c) instance (Select a, Select b) => Select (a, b) instance Select Int64 instance Select Int32 instance Select Int16 instance Select Int8 instance Select Int instance Select Word64 instance Select Word32 instance Select Word16 instance Select Word8 instance Select Word instance Select Bool instance Select Double instance Select Float instance (Positive n, Transcendental a) => Transcendental (T n a) instance Transcendental Double instance Transcendental Float instance (Positive n, Algebraic a) => Algebraic (T n a) instance Algebraic Double instance Algebraic Float instance (Positive n, Fraction a) => Fraction (T n a) instance Fraction Double instance Fraction Float instance (Positive n, Real a) => Real (T n a) instance Real Double instance Real Float instance (Positive n, PseudoModule a) => PseudoModule (T n a) instance PseudoModule Double instance PseudoModule Float instance (Positive n, Field a) => Field (T n a) instance Field Double instance Field Float instance (Positive n, PseudoRing a) => PseudoRing (T n a) instance PseudoRing Double instance PseudoRing Float instance (Positive n, Additive a) => Additive (T n a) instance Additive Word64 instance Additive Word32 instance Additive Word16 instance Additive Word8 instance Additive Word instance Additive Int64 instance Additive Int32 instance Additive Int16 instance Additive Int8 instance Additive Int instance Additive Double instance Additive Float instance (Positive n, RationalConstant a) => RationalConstant (T n a) instance (Positive n, IntegerConstant a) => IntegerConstant (T n a) instance RationalConstant Double instance RationalConstant Float instance IntegerConstant Int64 instance IntegerConstant Int32 instance IntegerConstant Int16 instance IntegerConstant Int8 instance IntegerConstant Int instance IntegerConstant Word64 instance IntegerConstant Word32 instance IntegerConstant Word16 instance IntegerConstant Word8 instance IntegerConstant Word instance IntegerConstant Double instance IntegerConstant Float instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Word instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Int instance C Double instance C Float instance C Bool8 instance C Bool instance (Positive n, C a) => Phi (T n a) instance (Positive n, C a) => Zero (T n a) instance (Positive n, C a) => Undefined (T n a) module LLVM.Extra.FastMath data NoNaNs NoNaNs :: NoNaNs data NoInfs NoInfs :: NoInfs data NoSignedZeros NoSignedZeros :: NoSignedZeros data AllowReciprocal AllowReciprocal :: AllowReciprocal data Fast Fast :: Fast class Flags flags setFlags :: (Flags flags, IsFloating a) => Proxy flags -> Bool -> Value a -> CodeGenFunction r () newtype Number flags a Number :: a -> Number flags a deconsNumber :: Number flags a -> a getNumber :: flags -> Number flags a -> a mvNumber :: T a -> T (Number flags a) mvDenumber :: T (Number flags a) -> T a class C a => MultiValue a setMultiValueFlags :: (MultiValue a, Flags flags) => Proxy flags -> Bool -> T (Number flags a) -> CodeGenFunction r () attachMultiValueFlags :: (Flags flags, MultiValue a) => Id (CodeGenFunction r (T (Number flags a))) liftNumberM :: (m ~ CodeGenFunction r, Flags flags, MultiValue b) => (T a -> m (T b)) -> T (Number flags a) -> m (T (Number flags b)) liftNumberM2 :: (m ~ CodeGenFunction r, Flags flags, MultiValue c) => (T a -> T b -> m (T c)) -> T (Number flags a) -> T (Number flags b) -> m (T (Number flags c)) mvecNumber :: T n a -> T n (Number flags a) mvecDenumber :: T n (Number flags a) -> T n a class (MultiValue a, C a) => MultiVector a setMultiVectorFlags :: (MultiVector a, Flags flags, Positive n) => Proxy flags -> Bool -> T n (Number flags a) -> CodeGenFunction r () attachMultiVectorFlags :: (Positive n, Flags flags, MultiVector a) => Id (CodeGenFunction r (T n (Number flags a))) liftMultiVectorM :: (m ~ CodeGenFunction r, Positive n, Flags flags, MultiVector b) => (T n a -> m (T n b)) -> T n (Number flags a) -> m (T n (Number flags b)) liftMultiVectorM2 :: (m ~ CodeGenFunction r, Positive n, Flags flags, MultiVector c) => (T n a -> T n b -> m (T n c)) -> T n (Number flags a) -> T n (Number flags b) -> m (T n (Number flags c)) class Tuple a setTupleFlags :: (Tuple a, Flags flags) => Proxy flags -> Bool -> a -> CodeGenFunction r () newtype Context flags a Context :: a -> Context flags a attachTupleFlags :: (Flags flags, Tuple a) => Id (CodeGenFunction r (Context flags a)) liftContext :: (Flags flags, Tuple b) => (a -> CodeGenFunction r b) -> Context flags a -> CodeGenFunction r (Context flags b) liftContext2 :: (Flags flags, Tuple c) => (a -> b -> CodeGenFunction r c) -> Context flags a -> Context flags b -> CodeGenFunction r (Context flags c) instance Show NoNaNs instance Eq NoNaNs instance Show NoInfs instance Eq NoInfs instance Show NoSignedZeros instance Eq NoSignedZeros instance Show AllowReciprocal instance Eq AllowReciprocal instance Show Fast instance Eq Fast instance Eq a => Eq (Number flags a) instance Ord a => Ord (Number flags a) instance Show a => Show (Number flags a) instance Num a => Num (Number flags a) instance Fractional a => Fractional (Number flags a) instance Floating a => Floating (Number flags a) instance Storable a => Storable (Number flags a) instance (Flags flags, Tuple a, Transcendental a) => Transcendental (Context flags a) instance (Flags flags, Tuple a, Algebraic a) => Algebraic (Context flags a) instance (Flags flags, Tuple a, FloatingComparison a) => FloatingComparison (Context flags a) instance (Flags flags, Tuple a, Comparison a) => Comparison (Context flags a) instance (Flags flags, Tuple a, Fraction a) => Fraction (Context flags a) instance (Flags flags, Tuple a, Real a) => Real (Context flags a) instance (Flags flags, Tuple a, RationalConstant a) => RationalConstant (Context flags a) instance (Flags flags, Tuple v, Field v) => Field (Context flags v) instance (Flags flags, Tuple a, IntegerConstant a) => IntegerConstant (Context flags a) instance (Flags flags, PseudoModule v, Tuple v, Scalar v ~ a, Tuple a) => PseudoModule (Context flags v) instance (Flags flags, PseudoRing a, Tuple a) => PseudoRing (Context flags a) instance (Flags flags, Tuple a, Additive a) => Additive (Context flags a) instance (Flags flags, Zero a, Tuple a) => Zero (Context flags a) instance IsFloating a => Tuple (Value a) instance (Flags flags, MultiVector a, FloatingComparison a) => FloatingComparison (Number flags a) instance (Flags flags, MultiVector a, Comparison a) => Comparison (Number flags a) instance (Flags flags, MultiVector a, Select a) => Select (Number flags a) instance (Flags flags, MultiVector a, Transcendental a) => Transcendental (Number flags a) instance (Flags flags, MultiVector a, Algebraic a) => Algebraic (Number flags a) instance (Flags flags, MultiVector a, Fraction a) => Fraction (Number flags a) instance (Flags flags, MultiVector a, Real a) => Real (Number flags a) instance (Flags flags, MultiVector a, Field a) => Field (Number flags a) instance (Flags flags, MultiVector a, PseudoRing a) => PseudoRing (Number flags a) instance (Flags flags, MultiVector a, Additive a) => Additive (Number flags a) instance (Flags flags, MultiVector a, RationalConstant a) => RationalConstant (Number flags a) instance (Flags flags, MultiVector a, IntegerConstant a) => IntegerConstant (Number flags a) instance (Flags flags, MultiVector a) => C (Number flags a) instance VectorValue n a => VectorValue n (Number flags a) instance MultiVector Double instance MultiVector Float instance (Flags flags, MultiValue a, FloatingComparison a) => FloatingComparison (Number flags a) instance (Flags flags, MultiValue a, Comparison a) => Comparison (Number flags a) instance (Flags flags, MultiValue a, Select a) => Select (Number flags a) instance (Flags flags, MultiValue a, Transcendental a) => Transcendental (Number flags a) instance (Flags flags, MultiValue a, Algebraic a) => Algebraic (Number flags a) instance (Flags flags, MultiValue a, Fraction a) => Fraction (Number flags a) instance (Flags flags, MultiValue a, Real a) => Real (Number flags a) instance (Flags flags, MultiValue a, a ~ Scalar v, MultiValue v, PseudoModule v) => PseudoModule (Number flags v) instance (Flags flags, MultiValue a, Field a) => Field (Number flags a) instance (Flags flags, MultiValue a, PseudoRing a) => PseudoRing (Number flags a) instance (Flags flags, MultiValue a, Additive a) => Additive (Number flags a) instance (Flags flags, MultiValue a, RationalConstant a) => RationalConstant (Number flags a) instance (Flags flags, MultiValue a, IntegerConstant a) => IntegerConstant (Number flags a) instance (Flags flags, Decompose pa) => Decompose (Number flags pa) instance (Flags flags, Compose a) => Compose (Number flags a) instance MultiValue Double instance MultiValue Float instance MultiValue a => C (Number flags a) instance Value a => Value (Number flags a) instance (Flags f0, Flags f1, Flags f2, Flags f3, Flags f4) => Flags (f0, f1, f2, f3, f4) instance (Flags f0, Flags f1, Flags f2, Flags f3) => Flags (f0, f1, f2, f3) instance (Flags f0, Flags f1, Flags f2) => Flags (f0, f1, f2) instance (Flags f0, Flags f1) => Flags (f0, f1) instance Flags Fast instance Flags AllowReciprocal instance Flags NoSignedZeros instance Flags NoInfs instance Flags NoNaNs module LLVM.Extra.Multi.Vector.Instance type MVVector n a = T (Vector n a) toMultiValue :: T n a -> MVVector n a fromMultiValue :: MVVector n a -> T n a liftMultiValueM :: Functor f => (T n a -> f (T m b)) -> (MVVector n a -> f (MVVector m b)) liftMultiValueM2 :: Functor f => (T n a -> T m b -> f (T k c)) -> (MVVector n a -> MVVector m b -> f (MVVector k c)) liftMultiValueM3 :: Functor f => (T n a -> T m b -> T m c -> f (T k d)) -> (MVVector n a -> MVVector m b -> MVVector m c -> f (MVVector k d)) instance (Positive n, BitShift a) => BitShift (Vector n a) instance (Positive n, Logic a) => Logic (Vector n a) instance (Positive n, Additive a) => Additive (Vector n a) instance (Positive n, RationalConstant a) => RationalConstant (Vector n a) instance (Positive n, IntegerConstant a) => IntegerConstant (Vector n a) instance (Positive n, C a) => C (Vector n a) module LLVM.Extra.Multi.Value newtype T a Cons :: (ValueOf a) -> T a class C a cons :: C a => a -> T a undef :: C a => T a zero :: C a => T a phi :: C a => BasicBlock -> T a -> CodeGenFunction r (T a) addPhi :: C a => BasicBlock -> T a -> T a -> CodeGenFunction r () consPrimitive :: (IsConst al, Value al ~ ValueOf a) => al -> T a undefPrimitive :: (IsType al, Value al ~ ValueOf a) => T a zeroPrimitive :: (IsType al, Value al ~ ValueOf a) => T a phiPrimitive :: (IsFirstClass al, Value al ~ ValueOf a) => BasicBlock -> T a -> CodeGenFunction r (T a) addPhiPrimitive :: (IsFirstClass al, Value al ~ ValueOf a) => BasicBlock -> T a -> T a -> CodeGenFunction r () consTuple :: Value a => a -> T a undefTuple :: (Value a, ValueOf a ~ al, Undefined al) => T a zeroTuple :: (Value a, ValueOf a ~ al, Zero al) => T a phiTuple :: (Value a, ValueOf a ~ al, Phi al) => BasicBlock -> T a -> CodeGenFunction r (T a) addPhiTuple :: (Value a, ValueOf a ~ al, Phi al) => BasicBlock -> T a -> T a -> CodeGenFunction r () consUnit :: ValueOf a ~ () => a -> T a undefUnit :: ValueOf a ~ () => T a zeroUnit :: ValueOf a ~ () => T a phiUnit :: ValueOf a ~ () => BasicBlock -> T a -> CodeGenFunction r (T a) addPhiUnit :: ValueOf a ~ () => BasicBlock -> T a -> T a -> CodeGenFunction r () boolPFrom8 :: T Bool8 -> T Bool bool8FromP :: T Bool -> T Bool8 intFromBool8 :: NativeInteger i ir => T Bool8 -> CodeGenFunction r (T i) floatFromBool8 :: NativeFloating a ar => T Bool8 -> CodeGenFunction r (T a) toEnum :: ValueOf w ~ Value w => T w -> T (T w e) fromEnum :: ValueOf w ~ Value w => T (T w e) -> T w succ :: (IsArithmetic w, IntegerConstant w) => T (T w e) -> CodeGenFunction r (T (T w e)) pred :: (IsArithmetic w, IntegerConstant w) => T (T w e) -> CodeGenFunction r (T (T w e)) cmpEnum :: (CmpRet w, IsPrimitive w) => CmpPredicate -> T (T w a) -> T (T w a) -> CodeGenFunction r (T Bool) class C a => Bounded a minBound, maxBound :: Bounded a => T a splitMaybe :: T (Maybe a) -> (T Bool, T a) toMaybe :: T Bool -> T a -> T (Maybe a) nothing :: C a => T (Maybe a) just :: T a -> T (Maybe a) fst :: T (a, b) -> T a snd :: T (a, b) -> T b curry :: (T (a, b) -> c) -> (T a -> T b -> c) uncurry :: (T a -> T b -> c) -> (T (a, b) -> c) mapFst :: (T a0 -> T a1) -> T (a0, b) -> T (a1, b) mapSnd :: (T b0 -> T b1) -> T (a, b0) -> T (a, b1) mapFstF :: Functor f => (T a0 -> f (T a1)) -> T (a0, b) -> f (T (a1, b)) mapSndF :: Functor f => (T b0 -> f (T b1)) -> T (a, b0) -> f (T (a, b1)) swap :: T (a, b) -> T (b, a) fst3 :: T (a, b, c) -> T a snd3 :: T (a, b, c) -> T b thd3 :: T (a, b, c) -> T c mapFst3 :: (T a0 -> T a1) -> T (a0, b, c) -> T (a1, b, c) mapSnd3 :: (T b0 -> T b1) -> T (a, b0, c) -> T (a, b1, c) mapThd3 :: (T c0 -> T c1) -> T (a, b, c0) -> T (a, b, c1) mapFst3F :: Functor f => (T a0 -> f (T a1)) -> T (a0, b, c) -> f (T (a1, b, c)) mapSnd3F :: Functor f => (T b0 -> f (T b1)) -> T (a, b0, c) -> f (T (a, b1, c)) mapThd3F :: Functor f => (T c0 -> f (T c1)) -> T (a, b, c0) -> f (T (a, b, c1)) zip :: T a -> T b -> T (a, b) zip3 :: T a -> T b -> T c -> T (a, b, c) zip4 :: T a -> T b -> T c -> T d -> T (a, b, c, d) unzip :: T (a, b) -> (T a, T b) unzip3 :: T (a, b, c) -> (T a, T b, T c) unzip4 :: T (a, b, c, d) -> (T a, T b, T c, T d) tuple :: T tuple -> T (Tuple tuple) untuple :: T (Tuple tuple) -> T tuple tag :: T a -> T (Tagged tag a) untag :: T (Tagged tag a) -> T a liftTaggedM :: Monad m => (T a -> m (T b)) -> T (Tagged tag a) -> m (T (Tagged tag b)) liftTaggedM2 :: Monad m => (T a -> T b -> m (T c)) -> T (Tagged tag a) -> T (Tagged tag b) -> m (T (Tagged tag c)) consComplex :: T a -> T a -> T (Complex a) deconsComplex :: T (Complex a) -> (T a, T a) class Compose multituple where type family Composed multituple compose :: Compose multituple => multituple -> T (Composed multituple) class Composed (Decomposed T pattern) ~ PatternTuple pattern => Decompose pattern decompose :: Decompose pattern => pattern -> T (PatternTuple pattern) -> Decomposed T pattern -- | A combination of compose and decompose that let you -- operate on tuple multivalues as Haskell tuples. modify :: (Compose a, Decompose pattern) => pattern -> (Decomposed T pattern -> a) -> T (PatternTuple pattern) -> T (Composed a) modify2 :: (Compose a, Decompose patternA, Decompose patternB) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> T (Composed a) modifyF :: (Compose a, Decompose pattern, Functor f) => pattern -> (Decomposed T pattern -> f a) -> T (PatternTuple pattern) -> f (T (Composed a)) modifyF2 :: (Compose a, Decompose patternA, Decompose patternB, Functor f) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> f a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> f (T (Composed a)) data Atom a Atom :: Atom a atom :: Atom a realPart :: T (Complex a) -> T a imagPart :: T (Complex a) -> T a lift1 :: (ValueOf a -> ValueOf b) -> T a -> T b liftM0 :: Monad m => m (ValueOf a) -> m (T a) liftM :: Monad m => (ValueOf a -> m (ValueOf b)) -> T a -> m (T b) liftM2 :: Monad m => (ValueOf a -> ValueOf b -> m (ValueOf c)) -> T a -> T b -> m (T c) liftM3 :: Monad m => (ValueOf a -> ValueOf b -> ValueOf c -> m (ValueOf d)) -> T a -> T b -> T c -> m (T d) class C a => IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> T a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> T a class C a => Additive a add :: Additive a => T a -> T a -> CodeGenFunction r (T a) sub :: Additive a => T a -> T a -> CodeGenFunction r (T a) neg :: Additive a => T a -> CodeGenFunction r (T a) inc :: (Additive i, IntegerConstant i) => T i -> CodeGenFunction r (T i) dec :: (Additive i, IntegerConstant i) => T i -> CodeGenFunction r (T i) class Additive a => PseudoRing a mul :: PseudoRing a => T a -> T a -> CodeGenFunction r (T a) class PseudoRing a => Field a fdiv :: Field a => T a -> T a -> CodeGenFunction r (T a) class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => T (Scalar v) -> T v -> CodeGenFunction r (T v) class Additive a => Real a min :: Real a => T a -> T a -> CodeGenFunction r (T a) max :: Real a => T a -> T a -> CodeGenFunction r (T a) abs :: Real a => T a -> CodeGenFunction r (T a) signum :: Real a => T a -> CodeGenFunction r (T a) class Real a => Fraction a truncate :: Fraction a => T a -> CodeGenFunction r (T a) fraction :: Fraction a => T a -> CodeGenFunction r (T a) class (ValueOf i ~ Value ir, IsInteger ir, IntegerConstant ir, CmpRet ir, IsPrimitive ir) => NativeInteger i ir class (ValueOf a ~ Value ar, IsFloating ar, RationalConstant ar, CmpRet ar, IsPrimitive ar) => NativeFloating a ar truncateToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) roundToIntFast :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) ceilingToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) floorToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) splitFractionToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T (i, a)) class Field a => Algebraic a sqrt :: Algebraic a => T a -> CodeGenFunction r (T a) class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r (T a) sin, log, exp, cos :: Transcendental a => T a -> CodeGenFunction r (T a) pow :: Transcendental a => T a -> T a -> CodeGenFunction r (T a) class C a => Select a select :: Select a => T Bool -> T a -> T a -> CodeGenFunction r (T a) class Real a => Comparison a cmp :: Comparison a => CmpPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class C a => Logic a and :: Logic a => T a -> T a -> CodeGenFunction r (T a) or :: Logic a => T a -> T a -> CodeGenFunction r (T a) xor :: Logic a => T a -> T a -> CodeGenFunction r (T a) inv :: Logic a => T a -> CodeGenFunction r (T a) class BitShift a shl :: BitShift a => T a -> T a -> CodeGenFunction r (T a) shr :: BitShift a => T a -> T a -> CodeGenFunction r (T a) class PseudoRing a => Integral a idiv :: Integral a => T a -> T a -> CodeGenFunction r (T a) irem :: Integral a => T a -> T a -> CodeGenFunction r (T a) fromIntegral :: (NativeInteger i ir, NativeFloating a ar) => T i -> CodeGenFunction r (T a) module LLVM.Extra.Memory -- | An implementation of both Value and C must ensure that -- haskellValue is compatible with Stored (Struct -- haskellValue) (which we want to call llvmStruct). That -- is, writing and reading llvmStruct by LLVM must be the same -- as accessing haskellValue by Storable methods. ToDo: -- In future we may also require Storable constraint for -- llvmStruct. -- -- We use a functional dependency in order to let type inference work -- nicely. class (Phi llvmValue, Undefined llvmValue, IsType (Struct llvmValue), IsSized (Struct llvmValue)) => C llvmValue where type family Struct llvmValue :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C llvmValue => Value (Ptr (Struct llvmValue)) -> CodeGenFunction r llvmValue store :: C llvmValue => llvmValue -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () decompose :: C llvmValue => Value (Struct llvmValue) -> CodeGenFunction r llvmValue compose :: C llvmValue => llvmValue -> CodeGenFunction r (Value (Struct llvmValue)) modify :: C llvmValue => (llvmValue -> CodeGenFunction r llvmValue) -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () type Record r o v = Element r o v v data Element r o v x element :: (C x, GetValue o n, ValueType o n ~ Struct x, GetElementPtr o (n, ()), ElementPtrType o (n, ()) ~ Struct x) => (v -> x) -> n -> Element r o v x loadRecord :: Record r o llvmValue -> Value (Ptr o) -> CodeGenFunction r llvmValue storeRecord :: Record r o llvmValue -> llvmValue -> Value (Ptr o) -> CodeGenFunction r () decomposeRecord :: Record r o llvmValue -> Value o -> CodeGenFunction r llvmValue composeRecord :: IsType o => Record r o llvmValue -> llvmValue -> CodeGenFunction r (Value o) loadNewtype :: C a => (a -> llvmValue) -> Value (Ptr (Struct a)) -> CodeGenFunction r llvmValue storeNewtype :: C a => (llvmValue -> a) -> llvmValue -> Value (Ptr (Struct a)) -> CodeGenFunction r () decomposeNewtype :: C a => (a -> llvmValue) -> Value (Struct a) -> CodeGenFunction r llvmValue composeNewtype :: C a => (llvmValue -> a) -> llvmValue -> CodeGenFunction r (Value (Struct a)) instance (Positive n, C a, C (VectorValueOf n a)) => C (T n a) instance (C a, C (ValueOf a)) => C (T a) instance (sm ~ StoredStruct s, IsType (Struct s), IsType (Struct sm)) => ConvertStruct s i () instance (sm ~ StoredStruct s, FirstClass a, am ~ Stored a, GetValue (Struct s) (Proxy i), GetValue (Struct sm) (Proxy i), ValueType (Struct s) (Proxy i) ~ a, ValueType (Struct sm) (Proxy i) ~ am, ConvertStruct s (Succ i) rem) => ConvertStruct s i (a, rem) instance (IsFirstClass (Struct s), IsType (Struct (StoredStruct s)), ConvertStruct s D0 s) => FirstClass (Struct s) instance FirstClass (StablePtr a) instance IsFunction a => FirstClass (FunPtr a) instance IsType a => FirstClass (Ptr a) instance (Natural n, IsFirstClass (Stored a), FirstClass a, IsSized a, IsSized (Stored a)) => FirstClass (Array n a) instance (Positive n, IsPrimitive a, IsPrimitive (Stored a), FirstClass a) => FirstClass (Vector n a) instance FirstClass Bool instance FirstClass Word64 instance FirstClass Word32 instance FirstClass Word16 instance FirstClass Word8 instance FirstClass Word instance FirstClass Int64 instance FirstClass Int32 instance FirstClass Int16 instance FirstClass Int8 instance FirstClass Int instance FirstClass Double instance FirstClass Float instance (IsSized a, IsFirstClass a) => C (Value a) instance C a => C (T a) instance (C a, C b) => C (T a b) instance C a => C (T a) instance (Natural n, C a, Natural (FromUnary n), Natural (FromUnary n :*: SizeOf (Struct a)), IsFirstClass (Struct a)) => C (T n a) instance (C a, C b, C c, C d) => C (a, b, c, d) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance Applicative (Element r o v) instance Functor (Element r o v) instance C () -- | Transfer values between Haskell and JIT generated code in an -- LLVM-compatible format. E.g. Bool is stored as i1 and -- occupies a byte, Vector n Bool is stored as a -- bit vector, Vector n Word8 is stored in an -- order depending on machine endianess, and Haskell tuples are stored as -- LLVM structs. module LLVM.Extra.Marshal class (Value a, C (ValueOf a), Marshal (Struct a), IsSized (Struct a)) => C a pack :: C a => a -> Struct a unpack :: C a => Struct a -> a type Struct a = Struct (ValueOf a) peek :: (C a, Struct a ~ struct, Marshal struct) => Ptr struct -> IO a poke :: (C a, Struct a ~ struct, Marshal struct) => Ptr struct -> a -> IO () class (C a, C a) => MV a type VectorStruct n a = Struct (VectorValueOf n a) class (Positive n, VectorValue n a, C (VectorValueOf n a), Marshal (VectorStruct n a), IsSized (VectorStruct n a)) => Vector n a packVector :: Vector n a => Vector n a -> VectorStruct n a unpackVector :: Vector n a => VectorStruct n a -> Vector n a with :: C a => a -> (Ptr (Struct a) -> IO b) -> IO b alloca :: IsType a => (Ptr a -> IO b) -> IO b instance (IsSized (Struct a), IsSized (Struct b), IsSized (Struct c), IsSized (Struct d), MV a, MV b, MV c, MV d) => MV (a, b, c, d) instance (IsSized (Struct a), IsSized (Struct b), IsSized (Struct c), MV a, MV b, MV c) => MV (a, b, c) instance (IsSized (Struct a), IsSized (Struct b), MV a, MV b) => MV (a, b) instance MV () instance MV (StablePtr a) instance IsFunction a => MV (FunPtr a) instance IsType a => MV (Ptr a) instance Storable a => MV (Ptr a) instance MV Int64 instance MV Int32 instance MV Int16 instance MV Int8 instance MV Int instance MV Word64 instance MV Word32 instance MV Word16 instance MV Word8 instance MV Word instance MV Double instance MV Float instance (Vector n a, Vector n b, Vector n c) => Vector n (a, b, c) instance (Vector n a, Vector n b) => Vector n (a, b) instance (Positive n, Natural (n :*: D64)) => Vector n Int64 instance (Positive n, Natural (n :*: D32)) => Vector n Int32 instance (Positive n, Natural (n :*: D16)) => Vector n Int16 instance (Positive n, Natural (n :*: D8)) => Vector n Int8 instance (Positive n, Natural (n :*: IntSize)) => Vector n Int instance (Positive n, Natural (n :*: D64)) => Vector n Word64 instance (Positive n, Natural (n :*: D32)) => Vector n Word32 instance (Positive n, Natural (n :*: D16)) => Vector n Word16 instance (Positive n, Natural (n :*: D8)) => Vector n Word8 instance (Positive n, Natural (n :*: IntSize)) => Vector n Word instance (Positive n, Natural (n :*: D64)) => Vector n Double instance (Positive n, Natural (n :*: D32)) => Vector n Float instance (Positive n, Natural (n :*: D1)) => Vector n Bool instance (Positive n, Natural (n :*: SizeOf a), Vector n a) => C (Vector n a) instance (IsSized (Struct a), IsSized (Struct b), IsSized (Struct c), IsSized (Struct d), C a, C b, C c, C d) => C (a, b, c, d) instance (IsSized (Struct a), IsSized (Struct b), IsSized (Struct c), C a, C b, C c) => C (a, b, c) instance (IsSized (Struct a), IsSized (Struct b), C a, C b) => C (a, b) instance C () instance C (StablePtr a) instance IsFunction a => C (FunPtr a) instance IsType a => C (Ptr a) instance Storable a => C (Ptr a) instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Int instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Word instance C Double instance C Float instance C Bool -- | Transfer values between Haskell and JIT generated code in a -- Haskell-compatible format as dictated by the Storable class. -- E.g. instance Bool may use more than a byte (e.g. Word32). For -- tuples, you may use the Tuple wrapper from the -- storable-record package. The Storable instance for -- Vectors is compatible with arrays, i.e. indices always count -- upwards irrespective of machine endianess and tuple elements are -- interleaved. module LLVM.Extra.Storable class (Storable a, Value a, Phi (ValueOf a), Undefined (ValueOf a)) => C a load :: C a => Value (Ptr a) -> CodeGenFunction r (ValueOf a) store :: C a => ValueOf a -> Value (Ptr a) -> CodeGenFunction r () storeNext :: (C a, ValueOf a ~ al, Value (Ptr a) ~ ptr) => al -> ptr -> CodeGenFunction r ptr modify :: (C a, ValueOf a ~ al) => (al -> CodeGenFunction r al) -> Value (Ptr a) -> CodeGenFunction r () class (Storable tuple, Value tuple, Phi (ValueOf tuple), Undefined (ValueOf tuple)) => Tuple tuple loadTuple :: Tuple tuple => Value (Ptr (Tuple tuple)) -> CodeGenFunction r (ValueOf tuple) storeTuple :: Tuple tuple => ValueOf tuple -> Value (Ptr (Tuple tuple)) -> CodeGenFunction r () class C a => Vector a assembleVector :: (Vector a, Positive n) => Proxy a -> Vector n (ValueOf a) -> CodeGenFunction r (VectorValueOf n a) disassembleVector :: (Vector a, Positive n) => Proxy a -> VectorValueOf n a -> CodeGenFunction r (Vector n (ValueOf a)) class TupleVector a deinterleave :: (TupleVector a, Positive n) => Proxy a -> Vector n (ValueOf a) -> CodeGenFunction r (VectorValueOf n a) interleave :: (TupleVector a, Positive n) => Proxy a -> VectorValueOf n a -> CodeGenFunction r (Vector n (ValueOf a)) loadMultiValue :: C a => Value (Ptr a) -> CodeGenFunction r (T a) storeMultiValue :: C a => T a -> Value (Ptr a) -> CodeGenFunction r () storeNextMultiValue :: C a => T a -> Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) modifyMultiValue :: C a => (T a -> CodeGenFunction r (T a)) -> Value (Ptr a) -> CodeGenFunction r () loadNewtype :: (C a, ValueOf a ~ al) => (a -> wrapped) -> (al -> wrappedl) -> Value (Ptr wrapped) -> CodeGenFunction r wrappedl storeNewtype :: (C a, ValueOf a ~ al) => (a -> wrapped) -> (wrappedl -> al) -> wrappedl -> Value (Ptr wrapped) -> CodeGenFunction r () loadTraversable :: (Repeat f, Traversable f, C a, ValueOf a ~ al) => Value (Ptr (f a)) -> CodeGenFunction r (f al) loadApplicative :: (Applicative f, Traversable f, C a, ValueOf a ~ al) => Value (Ptr (f a)) -> CodeGenFunction r (f al) storeFoldable :: (Foldable f, C a, ValueOf a ~ al) => f al -> Value (Ptr (f a)) -> CodeGenFunction r () advancePtr :: (Storable a, Value (Ptr a) ~ ptr) => Value Int -> ptr -> CodeGenFunction r ptr incrementPtr :: (Storable a, Value (Ptr a) ~ ptr) => ptr -> CodeGenFunction r ptr decrementPtr :: (Storable a, Value (Ptr a) ~ ptr) => ptr -> CodeGenFunction r ptr arrayLoop :: (Phi s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i, C a, Value (Ptr a) ~ ptrA) => Value i -> ptrA -> s -> (ptrA -> s -> CodeGenFunction r s) -> CodeGenFunction r s arrayLoop2 :: (Phi s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i, C a, Value (Ptr a) ~ ptrA, C b, Value (Ptr b) ~ ptrB) => Value i -> ptrA -> ptrB -> s -> (ptrA -> ptrB -> s -> CodeGenFunction r s) -> CodeGenFunction r s arrayLoopMaybeCont :: (Phi s, Undefined s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i, C a, Value (Ptr a) ~ ptrA, T (ptrA, s) ~ z) => Value i -> ptrA -> s -> (ptrA -> s -> T r z s) -> CodeGenFunction r (Value i, T s) arrayLoopMaybeCont2 :: (Phi s, Undefined s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i, C a, Value (Ptr a) ~ ptrA, C b, Value (Ptr b) ~ ptrB, T (ptrA, (ptrB, s)) ~ z) => Value i -> ptrA -> ptrB -> s -> (ptrA -> ptrB -> s -> T r z s) -> CodeGenFunction r (Value i, T s) module LLVM.Extra.Iterator -- | Simulates a non-strict list. data T r a mapM_ :: (a -> CodeGenFunction r ()) -> T r a -> CodeGenFunction r () mapState_ :: Phi t => (a -> t -> CodeGenFunction r t) -> T r a -> t -> CodeGenFunction r t mapStateM_ :: Phi t => (a -> StateT t (CodeGenFunction r) ()) -> T r a -> StateT t (CodeGenFunction r) () mapWhileState_ :: Phi t => (a -> t -> CodeGenFunction r (Value Bool, t)) -> T r a -> t -> CodeGenFunction r t empty :: T r a singleton :: a -> T r a cons :: (Phi a, Undefined a) => a -> T r a -> T r a -- | Attention: This always performs one function call more than necessary. -- I.e. if f reads from or writes to memory make sure that -- accessing one more pointer is legal. iterate :: (Phi a, Undefined a) => (a -> CodeGenFunction r a) -> a -> T r a countDown :: (Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> T r (Value i) arrayPtrs :: IsType a => Value (Ptr a) -> T r (Value (Ptr a)) storableArrayPtrs :: C a => Value (Ptr a) -> T r (Value (Ptr a)) mapM :: (a -> CodeGenFunction r b) -> T r a -> T r b mapMaybe :: (Phi b, Undefined b) => (a -> CodeGenFunction r (T b)) -> T r a -> T r b catMaybes :: (Phi a, Undefined a) => T r (T a) -> T r a takeWhileJust :: T r (T a) -> T r a takeWhile :: (a -> CodeGenFunction r (Value Bool)) -> T r a -> T r a cartesian :: (Phi a, Phi b, Undefined a, Undefined b) => T r a -> T r b -> T r (a, b) take :: (Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> T r a -> T r a fixedLengthLoop :: (Phi s, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> s -> (s -> CodeGenFunction r s) -> CodeGenFunction r s arrayLoop :: (Phi a, IsType b, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> Value (Ptr b) -> a -> (Value (Ptr b) -> a -> CodeGenFunction r a) -> CodeGenFunction r a arrayLoopWithExit :: (Phi s, IsType a, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) arrayLoop2 :: (Phi s, IsType a, IsType b, Num i, IsConst i, IsInteger i, CmpRet i, IsPrimitive i) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> CodeGenFunction r s) -> CodeGenFunction r s instance Applicative (T r) instance Functor (T r) module LLVM.Extra.Multi.Value.Vector cons :: (Positive n, C a) => Vector n a -> MVVector n a fst :: MVVector n (a, b) -> MVVector n a snd :: MVVector n (a, b) -> MVVector n b fst3 :: MVVector n (a, b, c) -> MVVector n a snd3 :: MVVector n (a, b, c) -> MVVector n b thd3 :: MVVector n (a, b, c) -> MVVector n c zip :: MVVector n a -> MVVector n b -> MVVector n (a, b) zip3 :: MVVector n a -> MVVector n b -> MVVector n c -> MVVector n (a, b, c) unzip :: MVVector n (a, b) -> (MVVector n a, MVVector n b) unzip3 :: MVVector n (a, b, c) -> (MVVector n a, MVVector n b, MVVector n c) swap :: MVVector n (a, b) -> MVVector n (b, a) mapFst :: (MVVector n a0 -> MVVector n a1) -> MVVector n (a0, b) -> MVVector n (a1, b) mapSnd :: (MVVector n b0 -> MVVector n b1) -> MVVector n (a, b0) -> MVVector n (a, b1) mapFst3 :: (MVVector n a0 -> MVVector n a1) -> MVVector n (a0, b, c) -> MVVector n (a1, b, c) mapSnd3 :: (MVVector n b0 -> MVVector n b1) -> MVVector n (a, b0, c) -> MVVector n (a, b1, c) mapThd3 :: (MVVector n c0 -> MVVector n c1) -> MVVector n (a, b, c0) -> MVVector n (a, b, c1) extract :: (Positive n, C a) => Value Word32 -> MVVector n a -> CodeGenFunction r (T a) insert :: (Positive n, C a) => Value Word32 -> T a -> MVVector n a -> CodeGenFunction r (MVVector n a) replicate :: (Positive n, C a) => T a -> CodeGenFunction r (MVVector n a) dissect :: (Positive n, C a) => MVVector n a -> CodeGenFunction r [T a] select :: (Positive n, Select a) => MVVector n Bool -> MVVector n a -> MVVector n a -> CodeGenFunction r (MVVector n a) cmp :: (Positive n, Comparison a) => CmpPredicate -> MVVector n a -> MVVector n a -> CodeGenFunction r (MVVector n Bool) take :: (Positive n, Positive m, C a) => MVVector n a -> CodeGenFunction r (MVVector m a) takeRev :: (Positive n, Positive m, C a) => MVVector n a -> CodeGenFunction r (MVVector m a) module LLVM.Extra.Multi.Iterator takeWhile :: (a -> CodeGenFunction r (T Bool)) -> T r a -> T r a countDown :: (Additive i, Comparison i, IntegerConstant i) => T i -> T r (T i) take :: (Additive i, Comparison i, IntegerConstant i) => T i -> T r a -> T r a class C a => Enum a succ, pred :: Enum a => T a -> CodeGenFunction r (T a) enumFrom :: Enum a => T a -> T r (T a) enumFromTo :: Enum a => T a -> T a -> T r (T a) instance (IsInteger w, IntegerConstant w, Num w, CmpRet w, IsPrimitive w, Enum e) => Enum (T w e) module LLVM.Extra.Multi.Class class C value where type family Size value :: * switch :: C value => f T -> f (T (Size value)) -> f value newtype Const a value Const :: value a -> Const a value getConst :: Const a value -> value a undef :: (C value, Size value ~ n, Positive n, C a) => value a zero :: (C value, Size value ~ n, Positive n, C a) => value a newtype Op0 r a value Op0 :: CodeGenFunction r (value a) -> Op0 r a value runOp0 :: Op0 r a value -> CodeGenFunction r (value a) newtype Op1 r a b value Op1 :: (value a -> CodeGenFunction r (value b)) -> Op1 r a b value runOp1 :: Op1 r a b value -> value a -> CodeGenFunction r (value b) newtype Op2 r a b c value Op2 :: (value a -> value b -> CodeGenFunction r (value c)) -> Op2 r a b c value runOp2 :: Op2 r a b c value -> value a -> value b -> CodeGenFunction r (value c) add :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) sub :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) neg :: (Positive n, Additive a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) mul :: (Positive n, PseudoRing a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) fdiv :: (Positive n, Field a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) scale :: (Positive n, PseudoModule v, n ~ Size value, C value) => value (Scalar v) -> value v -> CodeGenFunction r (value v) min :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) max :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) abs :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) signum :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) truncate :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) fraction :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) sqrt :: (Positive n, Algebraic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pi :: (Positive n, Transcendental a, n ~ Size value, C value) => CodeGenFunction r (value a) sin :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) log :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) exp :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) cos :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pow :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) cmp :: (Positive n, Comparison a, n ~ Size value, C value) => CmpPredicate -> value a -> value a -> CodeGenFunction r (value Bool) fcmp :: (Positive n, FloatingComparison a, n ~ Size value, C value) => FPPredicate -> value a -> value a -> CodeGenFunction r (value Bool) and :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) xor :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) or :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) inv :: (Positive n, Logic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) instance Positive n => C (T n) instance C T