-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Utility functions for the llvm interface -- -- The Low-Level Virtual-Machine is a compiler back-end with optimizer. -- You may also call it a high-level portable assembler. This package -- provides various utility functions for the Haskell interface to LLVM, -- for example: -- -- @package llvm-extra @version 0.7 module LLVM.Extra.Extension -- | This is an Applicative functor that registers, what extensions are -- needed in order to run the contained instructions. You can escape from -- the functor by calling run and providing a generic -- implementation. -- -- We use an applicative functor since with a monadic interface we had to -- create the specialised code in every case, in order to see which -- extensions where used in the course of creating the instructions. -- -- We use only one (unparameterized) type for all extensions, since this -- is the most simple solution. Alternatively we could use a type -- parameter where class constraints show what extensions are needed. -- This would be just like exceptions that are explicit in the type -- signature as in the control-monad-exception package. However we would -- still need to lift all basic LLVM instructions to the new monad. data T a -- | Analogous to FunctionArgs -- -- The type parameter r and its functional dependency are -- necessary since g must be a function of the form a -> -- ... -> c -> CodeGenFunction r d and we must ensure that the -- explicit r and the implicit r in the g do -- match. class CallArgs g data Subtarget Subtarget :: String -> String -> (forall r. CodeGenFunction r Bool) -> Subtarget -- | Declare that a certain plain LLVM instruction depends on a particular -- extension. This can be useful if you rely on the data layout of a -- certain architecture when doing a bitcast, or if you know that LLVM -- translates a certain generic operation to something especially optimal -- for the declared extension. wrap :: Subtarget -> a -> T a -- | Create an intrinsic and register the needed extension. We cannot -- immediately check whether the signature matches or whether the right -- extension is given. However, when resolving intrinsics LLVM will not -- find the intrinsic if the extension is wrong, and it also checks the -- signature. intrinsic :: (IsFunction f, CallArgs f g (Result g), CallArgs g) => Subtarget -> String -> T g intrinsicAttr :: (IsFunction f, CallArgs f g (Result g), CallArgs g) => [Attribute] -> Subtarget -> String -> T g -- | run generic specific generates the specific code if -- the required extensions are available on the host processor and -- generic otherwise. run :: CodeGenFunction r a -> T (CodeGenFunction r a) -> CodeGenFunction r a -- | Convenient variant of run: Only run the code with extended -- instructions if an additional condition is satisfied. runWhen :: Bool -> CodeGenFunction r a -> T (CodeGenFunction r a) -> CodeGenFunction r a -- | Only for debugging purposes. runUnsafe :: T a -> a with :: Functor f => f a -> (a -> b) -> f b with2 :: Applicative f => f a -> f b -> (a -> b -> c) -> f c with3 :: Applicative f => f a -> f b -> f c -> (a -> b -> c -> d) -> f d instance Functor T instance Applicative T instance CallArgs (CodeGenFunction r (Value a)) instance CallArgs g => CallArgs (Value a -> g) module LLVM.Extra.ExtensionCheck.X86 sse1 :: Subtarget sse2 :: Subtarget sse3 :: Subtarget ssse3 :: Subtarget sse41 :: Subtarget sse42 :: Subtarget avx :: Subtarget avx2 :: Subtarget avx512 :: Subtarget fma :: Subtarget amd3dnow :: Subtarget amd3dnowa :: Subtarget aes :: Subtarget sse4a :: Subtarget -- | These functions work in arbitrary monads but are especially helpful -- when working with the CodeGenFunction monad. module LLVM.Extra.Monad chain :: Monad m => [a -> m a] -> (a -> m a) liftR2 :: Monad m => (a -> b -> m c) -> m a -> m b -> m c liftR3 :: Monad m => (a -> b -> c -> m d) -> m a -> m b -> m c -> m d -- | Useful control structures additionally to those in -- LLVM.Util.Loop. module LLVM.Extra.Control arrayLoop :: (Phi a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr b) -> a -> (Value (Ptr b) -> a -> CodeGenFunction r a) -> CodeGenFunction r a arrayLoop2 :: (Phi s, IsType a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> CodeGenFunction r s) -> CodeGenFunction r s arrayLoopWithExit :: (Phi s, IsType a, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) arrayLoop2WithExit :: (Phi s, IsType a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) fixedLengthLoop :: (Phi s, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> s -> (s -> CodeGenFunction r s) -> CodeGenFunction r s whileLoop :: Phi a => a -> (a -> CodeGenFunction r (Value Bool)) -> (a -> CodeGenFunction r a) -> CodeGenFunction r a -- | This is a variant of whileLoop that may be more convient, -- because you only need one lambda expression for both loop condition -- and loop body. whileLoopShared :: Phi a => a -> (a -> (CodeGenFunction r (Value Bool), CodeGenFunction r a)) -> CodeGenFunction r a loopWithExit :: Phi a => a -> (a -> CodeGenFunction r (Value Bool, b)) -> (b -> CodeGenFunction r a) -> CodeGenFunction r b -- | This construct starts new blocks, so be prepared when continueing -- after an ifThenElse. ifThenElse :: Phi a => Value Bool -> CodeGenFunction r a -> CodeGenFunction r a -> CodeGenFunction r a ifThen :: Phi a => Value Bool -> a -> CodeGenFunction r a -> CodeGenFunction r a class Phi a => Select a select :: Select a => Value Bool -> a -> a -> CodeGenFunction r a selectTraversable :: (Select a, Traversable f, Applicative f) => Value Bool -> f a -> f a -> CodeGenFunction r (f a) -- | Branch-free variant of ifThen that is faster if the enclosed -- block is very simply, say, if it contains at most two instructions. It -- can only be used as alternative to ifThen if the enclosed block -- is free of side effects. ifThenSelect :: Select a => Value Bool -> a -> CodeGenFunction r a -> CodeGenFunction r a instance (Select a, Select b, Select c) => Select (a, b, c) instance (Select a, Select b) => Select (a, b) instance Select () instance (IsFirstClass a, CmpRet a, CmpResult a ~ Bool) => Select (Value a) module LLVM.Extra.Class class Undefined a undefTuple :: Undefined a => a class Zero a zeroTuple :: Zero a => a zeroTuplePointed :: (Zero a, Applicative f) => f a class Undefined (ValueTuple haskellValue) => MakeValueTuple haskellValue where type family ValueTuple haskellValue :: * valueTupleOf :: MakeValueTuple haskellValue => haskellValue -> ValueTuple haskellValue undefTuplePointed :: (Undefined a, Applicative f) => f a valueTupleOfFunctor :: (MakeValueTuple h, Functor f) => f h -> f (ValueTuple h) phisTraversable :: (Phi a, Traversable f) => BasicBlock -> f a -> CodeGenFunction r (f a) addPhisFoldable :: (Phi a, Foldable f, Applicative f) => BasicBlock -> f a -> f a -> CodeGenFunction r () instance (Positive n, IsPrimitive a, IsConst a) => MakeValueTuple (Vector n a) instance MakeValueTuple (StablePtr a) instance IsFunction a => MakeValueTuple (FunPtr a) instance IsType a => MakeValueTuple (Ptr a) instance MakeValueTuple () instance MakeValueTuple Word64 instance MakeValueTuple Word32 instance MakeValueTuple Word16 instance MakeValueTuple Word8 instance MakeValueTuple Int64 instance MakeValueTuple Int32 instance MakeValueTuple Int16 instance MakeValueTuple Int8 instance MakeValueTuple Bool instance MakeValueTuple Double instance MakeValueTuple Float instance (MakeValueTuple a, MakeValueTuple b) => MakeValueTuple (Either a b) instance MakeValueTuple a => MakeValueTuple (Maybe a) instance (MakeValueTuple ah, MakeValueTuple bh, MakeValueTuple ch) => MakeValueTuple (ah, bh, ch) instance (MakeValueTuple ah, MakeValueTuple bh) => MakeValueTuple (ah, bh) instance (Zero a, Zero b, Zero c) => Zero (a, b, c) instance (Zero a, Zero b) => Zero (a, b) instance IsFirstClass a => Zero (ConstValue a) instance IsFirstClass a => Zero (Value a) instance Zero () instance (Undefined a, Undefined b) => Undefined (T a b) instance Undefined a => Undefined (T a) instance (Undefined a, Undefined b, Undefined c) => Undefined (a, b, c) instance (Undefined a, Undefined b) => Undefined (a, b) instance IsFirstClass a => Undefined (ConstValue a) instance IsFirstClass a => Undefined (Value a) instance Undefined () module LLVM.Extra.Array size :: Natural n => Value (Array n a) -> Int -- | construct an array out of single elements -- -- You must assert that the length of the list matches the array size. -- -- This can be considered the inverse of extractAll. assemble :: (Natural n, IsFirstClass a, IsSized a) => [Value a] -> CodeGenFunction r (Value (Array n a)) -- | provide the elements of an array as a list of individual virtual -- registers -- -- This can be considered the inverse of assemble. extractAll :: (Natural n, IsFirstClass a, IsSized a) => Value (Array n a) -> CodeGenFunction r [Value a] -- | The loop is unrolled, since insertvalue and extractvalue -- expect constant indices. map :: (Natural n, IsFirstClass a, IsSized a, IsFirstClass b, IsSized b) => (Value a -> CodeGenFunction r (Value b)) -> (Value (Array n a) -> CodeGenFunction r (Value (Array n b))) -- | LLVM counterpart to Maybe datatype. module LLVM.Extra.Maybe -- | If isJust = False, then fromJust is an -- undefTuple. data T a Cons :: Value Bool -> a -> T a isJust :: T a -> Value Bool fromJust :: T a -> a -- | counterpart to maybe run :: Phi b => T a -> CodeGenFunction r b -> (a -> CodeGenFunction r b) -> CodeGenFunction r b for :: T a -> (a -> CodeGenFunction r ()) -> CodeGenFunction r () -- | counterpart to fromMaybe with swapped arguments select :: Select a => T a -> a -> CodeGenFunction r a alternative :: Select a => T a -> T a -> CodeGenFunction r (T a) -- | counterpart to Data.Maybe.HT.toMaybe fromBool :: Value Bool -> a -> T a toBool :: T a -> (Value Bool, a) getIsNothing :: T a -> CodeGenFunction r (Value Bool) just :: a -> T a nothing :: Undefined a => T a sequence :: T (CodeGenFunction r a) -> CodeGenFunction r (T a) traverse :: (a -> CodeGenFunction r b) -> T a -> CodeGenFunction r (T b) lift2 :: (a -> b -> c) -> T a -> T b -> CodeGenFunction r (T c) liftM2 :: (a -> b -> CodeGenFunction r c) -> T a -> T b -> CodeGenFunction r (T c) loopWithExit :: Phi a => a -> (a -> CodeGenFunction r (T c, b)) -> ((c, b) -> CodeGenFunction r a) -> CodeGenFunction r b -- | LLVM counterpart to Either datatype. module LLVM.Extra.Either -- | If isRight, then fromLeft is an undefTuple. -- If not isRight, then fromRight is an -- undefTuple. I would prefer a union type, but it was -- temporarily removed in LLVM-2.8 and did not return since then. data T a b Cons :: Value Bool -> a -> b -> T a b isRight :: T a b -> Value Bool fromLeft :: T a b -> a fromRight :: T a b -> b -- | counterpart to either run :: Phi c => T a b -> (a -> CodeGenFunction r c) -> (b -> CodeGenFunction r c) -> CodeGenFunction r c getIsLeft :: T a b -> CodeGenFunction r (Value Bool) mapLeft :: (a0 -> a1) -> T a0 b -> T a1 b mapRight :: (b0 -> b1) -> T a b0 -> T a b1 left :: Undefined b => a -> T a b right :: Undefined a => b -> T a b -- | Some special operations on X86 processors. If you want to use them in -- algorithms you will always have to prepare an alternative -- implementation in terms of plain LLVM instructions. You will then run -- them with run and this driver function then selects the most -- advanced of both implementations. Functions that are written this way -- can be found in LLVM.Extra.Vector. Availability of extensions -- is checked with the CPUID instruction. However this does only -- work if you compile code for the host machine, that is cross -- compilation will fail! For cross compilation we would need access to -- the SubTarget detection of LLVM that is only available in the C++ -- interface in version 2.6. module LLVM.Extra.Extension.X86 maxss :: T (V4Float -> V4Float -> CodeGenFunction r (V4Float)) minss :: T (V4Float -> V4Float -> CodeGenFunction r (V4Float)) maxps :: T (V4Float -> V4Float -> CodeGenFunction r (V4Float)) minps :: T (V4Float -> V4Float -> CodeGenFunction r (V4Float)) maxsd :: T (V2Double -> V2Double -> CodeGenFunction r (V2Double)) minsd :: T (V2Double -> V2Double -> CodeGenFunction r (V2Double)) maxpd :: T (V2Double -> V2Double -> CodeGenFunction r (V2Double)) minpd :: T (V2Double -> V2Double -> CodeGenFunction r (V2Double)) cmpss :: T (FPPredicate -> V4Float -> V4Float -> CodeGenFunction r V4Int32) cmpps :: T (FPPredicate -> V4Float -> V4Float -> CodeGenFunction r V4Int32) cmpsd :: T (FPPredicate -> V2Double -> V2Double -> CodeGenFunction r V2Int64) cmppd :: T (FPPredicate -> V2Double -> V2Double -> CodeGenFunction r V2Int64) cmpps256 :: T (FPPredicate -> V8Float -> V8Float -> CodeGenFunction r V8Int32) cmppd256 :: T (FPPredicate -> V4Double -> V4Double -> CodeGenFunction r V4Int64) pcmpgtb :: T (V16Int8 -> V16Int8 -> CodeGenFunction r V16Int8) pcmpgtw :: T (V8Int16 -> V8Int16 -> CodeGenFunction r V8Int16) pcmpgtd :: T (V4Int32 -> V4Int32 -> CodeGenFunction r V4Int32) pcmpgtq :: T (V2Int64 -> V2Int64 -> CodeGenFunction r V2Int64) pcmpugtb :: T (V16Word8 -> V16Word8 -> CodeGenFunction r V16Word8) pcmpugtw :: T (V8Word16 -> V8Word16 -> CodeGenFunction r V8Word16) pcmpugtd :: T (V4Word32 -> V4Word32 -> CodeGenFunction r V4Word32) pcmpugtq :: T (V2Word64 -> V2Word64 -> CodeGenFunction r V2Word64) pminsb :: T (V16Int8 -> V16Int8 -> CodeGenFunction r V16Int8) pminsw :: T (V8Int16 -> V8Int16 -> CodeGenFunction r V8Int16) pminsd :: T (V4Int32 -> V4Int32 -> CodeGenFunction r V4Int32) pmaxsb :: T (V16Int8 -> V16Int8 -> CodeGenFunction r V16Int8) pmaxsw :: T (V8Int16 -> V8Int16 -> CodeGenFunction r V8Int16) pmaxsd :: T (V4Int32 -> V4Int32 -> CodeGenFunction r V4Int32) pminub :: T (V16Word8 -> V16Word8 -> CodeGenFunction r V16Word8) pminuw :: T (V8Word16 -> V8Word16 -> CodeGenFunction r V8Word16) pminud :: T (V4Word32 -> V4Word32 -> CodeGenFunction r V4Word32) pmaxub :: T (V16Word8 -> V16Word8 -> CodeGenFunction r V16Word8) pmaxuw :: T (V8Word16 -> V8Word16 -> CodeGenFunction r V8Word16) pmaxud :: T (V4Word32 -> V4Word32 -> CodeGenFunction r V4Word32) pabsb :: T (V16Int8 -> CodeGenFunction r V16Int8) pabsw :: T (V8Int16 -> CodeGenFunction r V8Int16) pabsd :: T (V4Int32 -> CodeGenFunction r V4Int32) pmuludq :: T (V4Word32 -> V4Word32 -> CodeGenFunction r V2Word64) pmuldq :: T (V4Int32 -> V4Int32 -> CodeGenFunction r V2Int64) pmulld :: T (V4Word32 -> V4Word32 -> CodeGenFunction r V4Word32) cvtps2dq :: T (V4Float -> CodeGenFunction r V4Int32) -- | the upper two integers are set to zero, there is no instruction that -- converts to Int64 cvtpd2dq :: T (V2Double -> CodeGenFunction r V4Int32) cvtdq2ps :: T (V4Int32 -> CodeGenFunction r V4Float) -- | the upper two integers are ignored, there is no instruction that -- converts from Int64 cvtdq2pd :: T (V4Int32 -> CodeGenFunction r V2Double) -- | MXCSR is not really supported by LLVM-2.6. LLVM does not know about -- the dependency of all floating point operations on this status -- register. ldmxcsr :: T (Value (Ptr Word32) -> CodeGenFunction r ()) stmxcsr :: T (Value (Ptr Word32) -> CodeGenFunction r ()) withMXCSR :: Word32 -> T (CodeGenFunction r a -> CodeGenFunction r a) haddps :: T (V4Float -> V4Float -> CodeGenFunction r (V4Float)) haddpd :: T (V2Double -> V2Double -> CodeGenFunction r (V2Double)) dpps :: T (V4Float -> V4Float -> Value Int8 -> CodeGenFunction r (V4Float)) dppd :: T (V2Double -> V2Double -> Value Int8 -> CodeGenFunction r (V2Double)) roundss :: T (V4Float -> Value Word32 -> CodeGenFunction r V4Float) roundps :: T (V4Float -> Value Word32 -> CodeGenFunction r (V4Float)) roundsd :: T (V2Double -> Value Word32 -> CodeGenFunction r V2Double) roundpd :: T (V2Double -> Value Word32 -> CodeGenFunction r (V2Double)) absss :: T (V4Float -> CodeGenFunction r V4Float) abssd :: T (V2Double -> CodeGenFunction r V2Double) absps :: Positive n => T (Value (Vector n Float) -> CodeGenFunction r (Value (Vector n Float))) abspd :: Positive n => T (Value (Vector n Double) -> CodeGenFunction r (Value (Vector n Double))) module LLVM.Extra.Vector class (Positive (Size v), Phi v, Undefined v) => Simple v where type family Element v :: * type family Size v :: * shuffleMatch :: Simple v => ConstValue (Vector (Size v) Word32) -> v -> CodeGenFunction r v extract :: Simple v => Value Word32 -> v -> CodeGenFunction r (Element v) -- | Allow to work on records of vectors as if they are vectors of records. -- This is a reasonable approach for records of different element types -- since processor vectors can only be built from elements of the same -- type. But also, say, for chunked stereo signal this makes sense. In -- this case we would work on Stereo (Value a). -- -- Formerly we used a two-way dependency Vector - (Element, Size). -- Now we have only the dependency Vector -> (Element, Size). This -- means that we need some more type annotations as in -- umul32to64/assemble, on the other hand we can allow multiple vector -- types with respect to the same element type. E.g. we can provide a -- vector type with pair elements where the pair elements are interleaved -- in the vector. class Simple v => C v insert :: C v => Value Word32 -> Element v -> v -> CodeGenFunction r v class (n ~ Size (Construct n a), a ~ Element (Construct n a), C (Construct n a)) => Canonical n a where type family Construct n a :: * size :: Positive n => Value (Vector n a) -> Int sizeInTuple :: Simple v => v -> Int -- | Manually assemble a vector of equal values. Better use -- ScalarOrVector.replicate. replicate :: C v => Element v -> CodeGenFunction r v iterate :: C v => (Element v -> CodeGenFunction r (Element v)) -> Element v -> CodeGenFunction r v -- | construct a vector out of single elements -- -- You must assert that the length of the list matches the vector size. -- -- This can be considered the inverse of extractAll. assemble :: C v => [Element v] -> CodeGenFunction r v -- | Manually implement vector shuffling using insertelement and -- extractelement. In contrast to LLVM's built-in instruction it supports -- distinct vector sizes, but it allows only one input vector (or a tuple -- of vectors, but we cannot shuffle between them). For more complex -- shuffling we recommend extractAll and assemble. shuffle :: (C v, C w, Element v ~ Element w) => v -> ConstValue (Vector (Size w) Word32) -> CodeGenFunction r w -- | Rotate one element towards the higher elements. -- -- I don't want to call it rotateLeft or rotateRight, because there is no -- prefered layout for the vector elements. In Intel's instruction manual -- vector elements are indexed like the bits, that is from right to left. -- However, when working with Haskell list and enumeration syntax, the -- start index is left. rotateUp :: Simple v => v -> CodeGenFunction r v rotateDown :: Simple v => v -> CodeGenFunction r v reverse :: Simple v => v -> CodeGenFunction r v shiftUp :: C v => Element v -> v -> CodeGenFunction r (Element v, v) shiftDown :: C v => Element v -> v -> CodeGenFunction r (Element v, v) shiftUpMultiZero :: (C v, Zero (Element v)) => Int -> v -> CodeGenFunction r v shiftDownMultiZero :: (C v, Zero (Element v)) => Int -> v -> CodeGenFunction r v shuffleMatchTraversable :: (Simple v, Traversable f) => ConstValue (Vector (Size v) Word32) -> f v -> CodeGenFunction r (f v) -- | Implement the shuffleMatch method using the methods of the -- C class. shuffleMatchAccess :: C v => ConstValue (Vector (Size v) Word32) -> v -> CodeGenFunction r v shuffleMatchPlain1 :: (Positive n, IsPrimitive a) => Value (Vector n a) -> ConstValue (Vector n Word32) -> CodeGenFunction r (Value (Vector n a)) shuffleMatchPlain2 :: (Positive n, IsPrimitive a) => Value (Vector n a) -> Value (Vector n a) -> ConstValue (Vector n Word32) -> CodeGenFunction r (Value (Vector n a)) insertTraversable :: (C v, Traversable f, Applicative f) => Value Word32 -> f (Element v) -> f v -> CodeGenFunction r (f v) extractTraversable :: (Simple v, Traversable f) => Value Word32 -> f v -> CodeGenFunction r (f (Element v)) -- | provide the elements of a vector as a list of individual virtual -- registers -- -- This can be considered the inverse of assemble. extractAll :: Simple v => v -> CodeGenFunction r [Element v] data Constant n a constant :: Positive n => a -> Constant n a insertChunk :: (C c, C v, Element c ~ Element v) => Int -> c -> v -> CodeGenFunction r v modify :: C v => Value Word32 -> (Element v -> CodeGenFunction r (Element v)) -> (v -> CodeGenFunction r v) -- | Like LLVM.Util.Loop.mapVector but the loop is unrolled, which is -- faster since it can be packed by the code generator. map :: (C v, C w, Size v ~ Size w) => (Element v -> CodeGenFunction r (Element w)) -> (v -> CodeGenFunction r w) mapChunks :: (C ca, C cb, Size ca ~ Size cb, C va, C vb, Size va ~ Size vb, Element ca ~ Element va, Element cb ~ Element vb) => (ca -> CodeGenFunction r cb) -> (va -> CodeGenFunction r vb) zipChunksWith :: (C ca, C cb, C cc, Size ca ~ Size cb, Size cb ~ Size cc, C va, C vb, C vc, Size va ~ Size vb, Size vb ~ Size vc, Element ca ~ Element va, Element cb ~ Element vb, Element cc ~ Element vc) => (ca -> cb -> CodeGenFunction r cc) -> (va -> vb -> CodeGenFunction r vc) -- | If the target vector type is a native type then the chop operation -- produces no actual machine instruction. (nop) If the vector cannot be -- evenly divided into chunks the last chunk will be padded with -- undefined values. chop :: (C c, C v, Element c ~ Element v) => v -> [CodeGenFunction r c] -- | The target size is determined by the type. If the chunk list provides -- more data, the exceeding data is dropped. If the chunk list provides -- too few data, the target vector is filled with undefined elements. concat :: (C c, C v, Element c ~ Element v) => [c] -> CodeGenFunction r v -- | LLVM.select on boolean vectors cannot be translated to X86 code in -- LLVM-2.6, thus I code my own version that calls select on all -- elements. This is slow but works. When this issue is fixed, this -- function will be replaced by LLVM.select. select :: (IsFirstClass a, IsPrimitive a, Positive n, CmpRet a, CmpResult a ~ Bool) => Value (Vector n Bool) -> Value (Vector n a) -> Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) signedFraction :: (IsFloating a, IsConst a, Real a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) -- | Needs (log n) vector additions cumulate1 :: (IsArithmetic a, IsPrimitive a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) umul32to64 :: Positive n => Value (Vector n Word32) -> Value (Vector n Word32) -> CodeGenFunction r (Value (Vector n Word64)) -- | The order of addition is chosen for maximum efficiency. We do not try -- to prevent cancelations. class (IsArithmetic a, IsPrimitive a) => Arithmetic a where sum = sumGeneric sumToPair = sumToPairGeneric sumInterleavedToPair v = getLowestPair =<< reduceSumInterleaved 2 v cumulate = cumulateGeneric dotProduct x y = dotProductPartial (size x) x y mul = mul sum :: (Arithmetic a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value a) sumToPair :: (Arithmetic a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value a, Value a) sumInterleavedToPair :: (Arithmetic a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value a, Value a) cumulate :: (Arithmetic a, Positive n) => Value a -> Value (Vector n a) -> CodeGenFunction r (Value a, Value (Vector n a)) dotProduct :: (Arithmetic a, Positive n) => Value (Vector n a) -> Value (Vector n a) -> CodeGenFunction r (Value a) mul :: (Arithmetic a, Positive n) => Value (Vector n a) -> Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) -- | Attention: The rounding and fraction functions only work for floating -- point values with maximum magnitude of maxBound :: Int32. -- This way we save expensive handling of possibly seldom cases. class (Arithmetic a, CmpRet a, CmpResult a ~ Bool, IsConst a) => Real a min, max :: (Real a, Positive n) => Value (Vector n a) -> Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) abs :: (Real a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) signum :: (Real a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) truncate, fraction, floor :: (Real a, Positive n) => Value (Vector n a) -> CodeGenFunction r (Value (Vector n a)) instance Real Word64 instance Real Word32 instance Real Word16 instance Real Word8 instance Real Int64 instance Real Int32 instance Real Int16 instance Real Int8 instance Real Double instance Real Float instance Arithmetic Word32 instance Arithmetic Word64 instance Arithmetic Word16 instance Arithmetic Word8 instance Arithmetic Int64 instance Arithmetic Int32 instance Arithmetic Int16 instance Arithmetic Int8 instance Arithmetic Double instance Arithmetic Float instance Maskable Double instance Maskable Float instance Maskable Word64 instance Maskable Word32 instance Maskable Word16 instance Maskable Word8 instance Maskable Int64 instance Maskable Int32 instance Maskable Int16 instance Maskable Int8 instance (Canonical n a0, Canonical n a1, Canonical n a2) => Canonical n (a0, a1, a2) instance (Canonical n a0, Canonical n a1) => Canonical n (a0, a1) instance (Positive n, IsPrimitive a) => Canonical n (Value a) instance (Positive n, Phi a, Undefined a) => Simple (Constant n a) instance Undefined a => Undefined (Constant n a) instance Phi a => Phi (Constant n a) instance Traversable (Constant n) instance Foldable (Constant n) instance Applicative (Constant n) instance Functor (Constant n) instance (C v0, C v1, C v2, Size v0 ~ Size v1, Size v1 ~ Size v2) => C (v0, v1, v2) instance (Simple v0, Simple v1, Simple v2, Size v0 ~ Size v1, Size v1 ~ Size v2) => Simple (v0, v1, v2) instance (C v0, C v1, Size v0 ~ Size v1) => C (v0, v1) instance (Simple v0, Simple v1, Size v0 ~ Size v1) => Simple (v0, v1) instance (Positive n, IsPrimitive a) => C (Value (Vector n a)) instance (Positive n, IsPrimitive a) => Simple (Value (Vector n a)) -- | Support for unified handling of scalars and vectors. -- -- Attention: The rounding and fraction functions only work for floating -- point values with maximum magnitude of maxBound :: Int32. -- This way we save expensive handling of possibly seldom cases. module LLVM.Extra.ScalarOrVector class (Real a, IsFloating a) => Fraction a truncate :: Fraction a => Value a -> CodeGenFunction r (Value a) fraction :: Fraction a => Value a -> CodeGenFunction r (Value a) -- | The fraction has the same sign as the argument. This is not particular -- useful but fast on IEEE implementations. signedFraction :: Fraction a => Value a -> CodeGenFunction r (Value a) -- | increment (first operand) may be negative, phase must always be -- non-negative addToPhase :: Fraction a => Value a -> Value a -> CodeGenFunction r (Value a) -- | both increment and phase must be non-negative incPhase :: Fraction a => Value a -> Value a -> CodeGenFunction r (Value a) class Replicate vector replicate :: Replicate vector => Value (Scalar vector) -> CodeGenFunction r (Value vector) replicateConst :: Replicate vector => ConstValue (Scalar vector) -> ConstValue vector replicateOf :: (IsConst (Scalar v), Replicate v) => Scalar v -> Value v class IsArithmetic a => Real a min :: Real a => Value a -> Value a -> CodeGenFunction r (Value a) max :: Real a => Value a -> Value a -> CodeGenFunction r (Value a) abs :: Real a => Value a -> CodeGenFunction r (Value a) signum :: Real a => Value a -> CodeGenFunction r (Value a) class (IsArithmetic (Scalar v), IsArithmetic v) => PseudoModule v scale :: (PseudoModule v, a ~ Scalar v) => Value a -> Value v -> CodeGenFunction r (Value v) scaleConst :: (PseudoModule v, a ~ Scalar v) => ConstValue a -> ConstValue v -> CodeGenFunction r (ConstValue v) class IsConst a => IntegerConstant a constFromInteger :: IntegerConstant a => Integer -> ConstValue a class IntegerConstant a => RationalConstant a constFromRational :: RationalConstant a => Rational -> ConstValue a class RationalConstant a => TranscendentalConstant a constPi :: TranscendentalConstant a => ConstValue a instance (TranscendentalConstant a, IsPrimitive a, Positive n) => TranscendentalConstant (Vector n a) instance TranscendentalConstant Double instance TranscendentalConstant Float instance (RationalConstant a, IsPrimitive a, Positive n) => RationalConstant (Vector n a) instance RationalConstant Double instance RationalConstant Float instance (IntegerConstant a, IsPrimitive a, Positive n) => IntegerConstant (Vector n a) instance IntegerConstant Double instance IntegerConstant Float instance IntegerConstant Int64 instance IntegerConstant Int32 instance IntegerConstant Int16 instance IntegerConstant Int8 instance IntegerConstant Word64 instance IntegerConstant Word32 instance IntegerConstant Word16 instance IntegerConstant Word8 instance (IsArithmetic a, IsPrimitive a, Positive n) => PseudoModule (Vector n a) instance PseudoModule Double instance PseudoModule Float instance PseudoModule Int64 instance PseudoModule Int32 instance PseudoModule Int16 instance PseudoModule Int8 instance PseudoModule Word64 instance PseudoModule Word32 instance PseudoModule Word16 instance PseudoModule Word8 instance (Positive n, Real a) => Real (Vector n a) instance Real Word64 instance Real Word32 instance Real Word16 instance Real Word8 instance Real Int64 instance Real Int32 instance Real Int16 instance Real Int8 instance Real FP128 instance Real Double instance Real Float instance (Positive n, IsPrimitive a) => Replicate (Vector n a) instance Replicate Word64 instance Replicate Word32 instance Replicate Word16 instance Replicate Word8 instance Replicate Int64 instance Replicate Int32 instance Replicate Int16 instance Replicate Int8 instance Replicate Bool instance Replicate FP128 instance Replicate Double instance Replicate Float instance (Positive n, Real a, IsFloating a, IsConst a) => Fraction (Vector n a) instance Fraction Double instance Fraction Float module LLVM.Extra.Arithmetic -- | This and the following type classes are intended for arithmetic -- operations on wrappers around LLVM types. E.g. you might define a -- fixed point fraction type by -- --
--   newtype Fixed = Fixed Int32
--   
-- -- and then use the same methods for floating point and fixed point -- arithmetic. -- -- In contrast to the arithmetic methods in the llvm wrapper, in -- our methods the types of operands and result match. Advantage: Type -- inference determines most of the types automatically. Disadvantage: -- You cannot use constant values directly, but you have to convert them -- all to Value. class Zero a => Additive a zero :: Additive a => a add :: Additive a => a -> a -> CodeGenFunction r a sub :: Additive a => a -> a -> CodeGenFunction r a neg :: Additive a => a -> CodeGenFunction r a one :: IntegerConstant a => a inc :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) dec :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) class Additive a => PseudoRing a mul :: PseudoRing a => a -> a -> CodeGenFunction r a square :: PseudoRing a => a -> CodeGenFunction r a class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => Scalar v -> v -> CodeGenFunction r v class PseudoRing a => Field a fdiv :: Field a => a -> a -> CodeGenFunction r a class IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> a -- | In Haskell terms this is a quot. idiv :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) irem :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> a -> a -> CodeGenFunction r (CmpResult a) class Comparison a where type family CmpResult a :: * cmp :: Comparison a => CmpPredicate -> a -> a -> CodeGenFunction r (CmpResult a) data CmpPredicate :: * -- | equal CmpEQ :: CmpPredicate -- | not equal CmpNE :: CmpPredicate -- | greater than CmpGT :: CmpPredicate -- | greater or equal CmpGE :: CmpPredicate -- | less than CmpLT :: CmpPredicate -- | less or equal CmpLE :: CmpPredicate class Logic a and :: Logic a => a -> a -> CodeGenFunction r a or :: Logic a => a -> a -> CodeGenFunction r a xor :: Logic a => a -> a -> CodeGenFunction r a inv :: Logic a => a -> CodeGenFunction r a class Additive a => Real a min :: Real a => a -> a -> CodeGenFunction r a max :: Real a => a -> a -> CodeGenFunction r a abs :: Real a => a -> CodeGenFunction r a signum :: Real a => a -> CodeGenFunction r a class Real a => Fraction a truncate :: Fraction a => a -> CodeGenFunction r a fraction :: Fraction a => a -> CodeGenFunction r a signedFraction :: Fraction a => a -> CodeGenFunction r a addToPhase :: Fraction a => a -> a -> CodeGenFunction r a -- | both increment and phase must be non-negative incPhase :: Fraction a => a -> a -> CodeGenFunction r a advanceArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) decreaseArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) class Field a => Algebraic a sqrt :: Algebraic a => a -> CodeGenFunction r a class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r a sin, log, exp, cos :: Transcendental a => a -> CodeGenFunction r a pow :: Transcendental a => a -> a -> CodeGenFunction r a instance (IsFloating a, TranscendentalConstant a) => Transcendental (Value a) instance IsFloating a => Algebraic (Value a) instance IsInteger a => Logic (ConstValue a) instance IsInteger a => Logic (Value a) instance (IsFloating a, CmpRet a) => FloatingComparison (ConstValue a) instance (IsFloating a, CmpRet a) => FloatingComparison (Value a) instance CmpRet a => Comparison (ConstValue a) instance CmpRet a => Comparison (Value a) instance Fraction a => Fraction (Value a) instance Real a => Real (Value a) instance RationalConstant a => RationalConstant (Value a) instance RationalConstant a => RationalConstant (ConstValue a) instance IsFloating v => Field (ConstValue v) instance IsFloating v => Field (Value v) instance IntegerConstant a => IntegerConstant (Value a) instance IntegerConstant a => IntegerConstant (ConstValue a) instance PseudoModule v => PseudoModule (ConstValue v) instance PseudoModule v => PseudoModule (Value v) instance IsArithmetic v => PseudoRing (ConstValue v) instance IsArithmetic v => PseudoRing (Value v) instance (Additive a, Additive b, Additive c) => Additive (a, b, c) instance (Additive a, Additive b) => Additive (a, b) instance IsArithmetic a => Additive (ConstValue a) instance IsArithmetic a => Additive (Value a) module LLVM.Extra.Multi.Value newtype T a Cons :: (Repr Value a) -> T a class C a where type family Repr (f :: * -> *) a :: * cons :: C a => a -> T a undef :: C a => T a zero :: C a => T a phis :: C a => BasicBlock -> T a -> CodeGenFunction r (T a) addPhis :: C a => BasicBlock -> T a -> T a -> CodeGenFunction r () consPrimitive :: (IsConst al, Value al ~ Repr Value a) => al -> T a undefPrimitive :: (IsType al, Value al ~ Repr Value a) => T a zeroPrimitive :: (IsType al, Value al ~ Repr Value a) => T a phisPrimitive :: (IsFirstClass al, Value al ~ Repr Value a) => BasicBlock -> T a -> CodeGenFunction r (T a) addPhisPrimitive :: (IsFirstClass al, Value al ~ Repr Value a) => BasicBlock -> T a -> T a -> CodeGenFunction r () consUnit :: Repr Value a ~ () => a -> T a undefUnit :: Repr Value a ~ () => T a zeroUnit :: Repr Value a ~ () => T a phisUnit :: Repr Value a ~ () => BasicBlock -> T a -> CodeGenFunction r (T a) addPhisUnit :: Repr Value a ~ () => BasicBlock -> T a -> T a -> CodeGenFunction r () fst :: T (a, b) -> T a snd :: T (a, b) -> T b curry :: (T (a, b) -> c) -> (T a -> T b -> c) uncurry :: (T a -> T b -> c) -> (T (a, b) -> c) mapFst :: (T a0 -> T a1) -> T (a0, b) -> T (a1, b) mapSnd :: (T b0 -> T b1) -> T (a, b0) -> T (a, b1) swap :: T (a, b) -> T (b, a) fst3 :: T (a, b, c) -> T a snd3 :: T (a, b, c) -> T b thd3 :: T (a, b, c) -> T c mapFst3 :: (T a0 -> T a1) -> T (a0, b, c) -> T (a1, b, c) mapSnd3 :: (T b0 -> T b1) -> T (a, b0, c) -> T (a, b1, c) mapThd3 :: (T c0 -> T c1) -> T (a, b, c0) -> T (a, b, c1) zip :: T a -> T b -> T (a, b) zip3 :: T a -> T b -> T c -> T (a, b, c) zip4 :: T a -> T b -> T c -> T d -> T (a, b, c, d) unzip :: T (a, b) -> (T a, T b) unzip3 :: T (a, b, c) -> (T a, T b, T c) unzip4 :: T (a, b, c, d) -> (T a, T b, T c, T d) class Compose multituple where type family Composed multituple compose :: Compose multituple => multituple -> T (Composed multituple) class Composed (Decomposed T pattern) ~ PatternTuple pattern => Decompose pattern decompose :: Decompose pattern => pattern -> T (PatternTuple pattern) -> Decomposed T pattern -- | A combination of compose and decompose that let you -- operate on tuple multivalues as Haskell tuples. modify :: (Compose a, Decompose pattern) => pattern -> (Decomposed T pattern -> a) -> T (PatternTuple pattern) -> T (Composed a) modify2 :: (Compose a, Decompose patternA, Decompose patternB) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> T (Composed a) modifyF :: (Compose a, Decompose pattern, Functor f) => pattern -> (Decomposed T pattern -> f a) -> T (PatternTuple pattern) -> f (T (Composed a)) modifyF2 :: (Compose a, Decompose patternA, Decompose patternB, Functor f) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> f a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> f (T (Composed a)) data Atom a Atom :: Atom a atom :: Atom a lift1 :: (Repr Value a -> Repr Value b) -> T a -> T b liftM0 :: Monad m => m (Repr Value a) -> m (T a) liftM :: Monad m => (Repr Value a -> m (Repr Value b)) -> T a -> m (T b) liftM2 :: Monad m => (Repr Value a -> Repr Value b -> m (Repr Value c)) -> T a -> T b -> m (T c) liftM3 :: Monad m => (Repr Value a -> Repr Value b -> Repr Value c -> m (Repr Value d)) -> T a -> T b -> T c -> m (T d) class C a => IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> T a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> T a class C a => Additive a add :: Additive a => T a -> T a -> CodeGenFunction r (T a) sub :: Additive a => T a -> T a -> CodeGenFunction r (T a) neg :: Additive a => T a -> CodeGenFunction r (T a) class Additive a => PseudoRing a mul :: PseudoRing a => T a -> T a -> CodeGenFunction r (T a) class PseudoRing a => Field a fdiv :: Field a => T a -> T a -> CodeGenFunction r (T a) class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => T (Scalar v) -> T v -> CodeGenFunction r (T v) class Additive a => Real a min :: Real a => T a -> T a -> CodeGenFunction r (T a) max :: Real a => T a -> T a -> CodeGenFunction r (T a) abs :: Real a => T a -> CodeGenFunction r (T a) signum :: Real a => T a -> CodeGenFunction r (T a) class Real a => Fraction a truncate :: Fraction a => T a -> CodeGenFunction r (T a) fraction :: Fraction a => T a -> CodeGenFunction r (T a) class Field a => Algebraic a sqrt :: Algebraic a => T a -> CodeGenFunction r (T a) class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r (T a) sin, log, exp, cos :: Transcendental a => T a -> CodeGenFunction r (T a) pow :: Transcendental a => T a -> T a -> CodeGenFunction r (T a) class C a => Select a select :: Select a => T Bool -> T a -> T a -> CodeGenFunction r (T a) class Real a => Comparison a cmp :: Comparison a => CmpPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class Logic a and :: Logic a => T a -> T a -> CodeGenFunction r (T a) or :: Logic a => T a -> T a -> CodeGenFunction r (T a) xor :: Logic a => T a -> T a -> CodeGenFunction r (T a) inv :: Logic a => T a -> CodeGenFunction r (T a) class PseudoRing a => Integral a idiv :: Integral a => T a -> T a -> CodeGenFunction r (T a) irem :: Integral a => T a -> T a -> CodeGenFunction r (T a) instance Integral Int64 instance Integral Int32 instance Integral Word64 instance Integral Word32 instance Logic a => Logic (T a) instance Logic Bool instance FloatingComparison a => FloatingComparison (T a) instance FloatingComparison Float instance Comparison a => Comparison (T a) instance Comparison Double instance Comparison Float instance Select a => Select (T a) instance (Select a, Select b, Select c) => Select (a, b, c) instance (Select a, Select b) => Select (a, b) instance Select Int64 instance Select Int32 instance Select Word64 instance Select Word32 instance Select Double instance Select Float instance Transcendental a => Transcendental (T a) instance Transcendental Double instance Transcendental Float instance Algebraic a => Algebraic (T a) instance Algebraic Double instance Algebraic Float instance Fraction a => Fraction (T a) instance Fraction Double instance Fraction Float instance Real a => Real (T a) instance Real Int64 instance Real Int32 instance Real Word64 instance Real Word32 instance Real Double instance Real Float instance PseudoModule a => PseudoModule (T a) instance PseudoModule Double instance PseudoModule Float instance Field a => Field (T a) instance Field Double instance Field Float instance PseudoRing a => PseudoRing (T a) instance PseudoRing Int64 instance PseudoRing Int32 instance PseudoRing Word64 instance PseudoRing Word32 instance PseudoRing Double instance PseudoRing Float instance Additive a => Additive (T a) instance Additive Int64 instance Additive Int32 instance Additive Word64 instance Additive Word32 instance Additive Double instance Additive Float instance RationalConstant a => RationalConstant (T a) instance IntegerConstant a => IntegerConstant (T a) instance RationalConstant Double instance RationalConstant Float instance IntegerConstant Double instance IntegerConstant Float instance C a => Phi (T a) instance C a => Undefined (T a) instance C a => Zero (T a) instance (Decompose pa, Decompose pb, Decompose pc, Decompose pd) => Decompose (pa, pb, pc, pd) instance (Compose a, Compose b, Compose c, Compose d) => Compose (a, b, c, d) instance (Decompose pa, Decompose pb, Decompose pc) => Decompose (pa, pb, pc) instance (Compose a, Compose b, Compose c) => Compose (a, b, c) instance (Decompose pa, Decompose pb) => Decompose (pa, pb) instance (Compose a, Compose b) => Compose (a, b) instance Decompose (Atom a) instance Compose (T a) instance (C a, C b, C c, C d) => C (a, b, c, d) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C () instance C (StablePtr a) instance IsFunction a => C (FunPtr a) instance IsType a => C (Ptr a) instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Double instance C Float instance C Bool module LLVM.Extra.Multi.Vector newtype T n a Cons :: (Repr (Value n) a) -> T n a consPrim :: Repr (Value n) a ~ Value n a => Value (Vector n a) -> T n a deconsPrim :: Repr (Value n) a ~ Value n a => T n a -> Value (Vector n a) class C a => C a undef :: (C a, Positive n) => T n a zero :: (C a, Positive n) => T n a phis :: (C a, Positive n) => BasicBlock -> T n a -> CodeGenFunction r (T n a) addPhis :: (C a, Positive n) => BasicBlock -> T n a -> T n a -> CodeGenFunction r () shuffleMatch :: (C a, Positive n) => ConstValue (Vector n Word32) -> T n a -> CodeGenFunction r (T n a) extract :: (C a, Positive n) => Value Word32 -> T n a -> CodeGenFunction r (T a) insert :: (C a, Positive n) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) newtype Value n a Value :: (PrimValue n a) -> Value n a map :: (Positive n, C a, C b) => (T a -> CodeGenFunction r (T b)) -> (T n a -> CodeGenFunction r (T n b)) zip :: T n a -> T n b -> T n (a, b) zip3 :: T n a -> T n b -> T n c -> T n (a, b, c) unzip :: T n (a, b) -> (T n a, T n b) unzip3 :: T n (a, b, c) -> (T n a, T n b, T n c) replicate :: (Positive n, C a) => T a -> CodeGenFunction r (T n a) iterate :: (Positive n, C a) => (T a -> CodeGenFunction r (T a)) -> T a -> CodeGenFunction r (T n a) lift1 :: (Repr (Value n) a -> Repr (Value n) b) -> T n a -> T n b modify :: (Positive n, C a) => Value Word32 -> (T a -> CodeGenFunction r (T a)) -> (T n a -> CodeGenFunction r (T n a)) assemble :: (Positive n, C a) => [T a] -> CodeGenFunction r (T n a) dissect :: (Positive n, C a) => T n a -> CodeGenFunction r [T a] dissectList :: (Positive n, C a) => T n a -> [CodeGenFunction r (T a)] reverse :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) -- | Rotate one element towards the higher elements. -- -- I don't want to call it rotateLeft or rotateRight, because there is no -- prefered layout for the vector elements. In Intel's instruction manual -- vector elements are indexed like the bits, that is from right to left. -- However, when working with Haskell list and enumeration syntax, the -- start index is left. rotateUp :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) rotateDown :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) shiftUp :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftDown :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftUpMultiZero :: (Positive n, C a, ValueTuple a ~ al, Zero al) => Int -> T n a -> CodeGenFunction r (T n a) shiftDownMultiZero :: (Positive n, C a, ValueTuple a ~ al, Zero al) => Int -> T n a -> CodeGenFunction r (T n a) undefPrimitive :: (Positive n, IsPrimitive a, Repr (Value n) a ~ Value n a) => T n a shuffleMatchPrimitive :: (Positive n, IsPrimitive a, Repr Value a ~ Value a, Repr (Value n) a ~ Value n a) => ConstValue (Vector n Word32) -> T n a -> CodeGenFunction r (T n a) extractPrimitive :: (Positive n, IsPrimitive a, Repr Value a ~ Value a, Repr (Value n) a ~ Value n a) => Value Word32 -> T n a -> CodeGenFunction r (T a) insertPrimitive :: (Positive n, IsPrimitive a, Repr Value a ~ Value a, Repr (Value n) a ~ Value n a) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) shuffleMatchTraversable :: (Positive n, C a, Traversable f) => ConstValue (Vector n Word32) -> f (T n a) -> CodeGenFunction r (f (T n a)) insertTraversable :: (Positive n, C a, Traversable f, Applicative f) => Value Word32 -> f (T a) -> f (T n a) -> CodeGenFunction r (f (T n a)) extractTraversable :: (Positive n, C a, Traversable f) => Value Word32 -> f (T n a) -> CodeGenFunction r (f (T a)) class (Additive a, C a) => Additive a add :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) sub :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) neg :: (Additive a, Positive n) => T n a -> CodeGenFunction r (T n a) class (PseudoRing a, Additive a) => PseudoRing a mul :: (PseudoRing a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (Field a, PseudoRing a) => Field a fdiv :: (Field a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (PseudoModule v, PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: (PseudoModule v, Positive n) => T n (Scalar v) -> T n v -> CodeGenFunction r (T n v) class (Real a, Additive a) => Real a min :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) max :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) abs :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) signum :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Fraction a, Real a) => Fraction a truncate :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) fraction :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Algebraic a, Field a) => Algebraic a sqrt :: (Algebraic a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Transcendental a, Algebraic a) => Transcendental a pi :: (Transcendental a, Positive n) => CodeGenFunction r (T n a) sin, log, exp, cos :: (Transcendental a, Positive n) => T n a -> CodeGenFunction r (T n a) pow :: (Transcendental a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (FloatingComparison a, Comparison a) => FloatingComparison a fcmp :: (FloatingComparison a, Positive n) => FPPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class (Comparison a, C a) => Comparison a cmp :: (Comparison a, Positive n) => CmpPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class (Logic a, C a) => Logic a and :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) or :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) xor :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) inv :: (Logic a, Positive n) => T n a -> CodeGenFunction r (T n a) instance (Positive n, Logic a) => Logic (T n a) instance Logic Bool instance (Positive n, FloatingComparison a) => FloatingComparison (T n a) instance FloatingComparison Float instance (Positive n, Comparison a) => Comparison (T n a) instance Comparison Double instance Comparison Float instance (Positive n, Transcendental a) => Transcendental (T n a) instance Transcendental Double instance Transcendental Float instance (Positive n, Algebraic a) => Algebraic (T n a) instance Algebraic Double instance Algebraic Float instance (Positive n, Fraction a) => Fraction (T n a) instance Fraction Double instance Fraction Float instance (Positive n, Real a) => Real (T n a) instance Real Double instance Real Float instance (Positive n, PseudoModule a) => PseudoModule (T n a) instance PseudoModule Double instance PseudoModule Float instance (Positive n, Field a) => Field (T n a) instance Field Double instance Field Float instance (Positive n, PseudoRing a) => PseudoRing (T n a) instance PseudoRing Double instance PseudoRing Float instance (Positive n, Additive a) => Additive (T n a) instance Additive Double instance Additive Float instance (Positive n, RationalConstant a) => RationalConstant (T n a) instance (Positive n, IntegerConstant a) => IntegerConstant (T n a) instance RationalConstant Double instance RationalConstant Float instance IntegerConstant Double instance IntegerConstant Float instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C Double instance C Float instance C Bool instance (Positive n, C a) => Phi (T n a) instance (Positive n, C a) => Zero (T n a) instance (Positive n, C a) => Undefined (T n a) module LLVM.Extra.Multi.Vector.Memory class (Positive n, C a, IsSized (Struct n a)) => C n a where type family Struct n a :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C n a => Value (Ptr (Struct n a)) -> CodeGenFunction r (T n a) store :: C n a => T n a -> Value (Ptr (Struct n a)) -> CodeGenFunction r () decompose :: C n a => Value (Struct n a) -> CodeGenFunction r (T n a) compose :: C n a => T n a -> CodeGenFunction r (Value (Struct n a)) instance (C n a, C n b) => C n (a, b) instance (Positive n, Positive (n :*: D64)) => C n Double instance (Positive n, Positive (n :*: D32)) => C n Float module LLVM.Extra.Multi.Value.Memory class (C a, IsSized (Struct a)) => C a where type family Struct a :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C a => Value (Ptr (Struct a)) -> CodeGenFunction r (T a) store :: C a => T a -> Value (Ptr (Struct a)) -> CodeGenFunction r () decompose :: C a => Value (Struct a) -> CodeGenFunction r (T a) compose :: C a => T a -> CodeGenFunction r (Value (Struct a)) loadPrimitive :: Repr Value a ~ Value a => Value (Ptr a) -> CodeGenFunction r (T a) storePrimitive :: Repr Value a ~ Value a => T a -> Value (Ptr a) -> CodeGenFunction r () decomposePrimitive :: Repr Value a ~ Value a => Value a -> CodeGenFunction r (T a) composePrimitive :: Repr Value a ~ Value a => T a -> CodeGenFunction r (Value a) loadUnit :: Repr Value a ~ () => Value (Ptr (Struct ())) -> CodeGenFunction r (T a) storeUnit :: T a -> Value (Ptr (Struct ())) -> CodeGenFunction r () decomposeUnit :: Repr Value a ~ () => Value (Struct ()) -> CodeGenFunction r (T a) composeUnit :: T a -> CodeGenFunction r (Value (Struct ())) castStructPtr :: Ptr a -> Ptr (Struct a) instance (C a, C b, C c, C d) => C (a, b, c, d) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C () instance C (StablePtr a) instance IsFunction a => C (FunPtr a) instance IsType a => C (Ptr a) instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Double instance C Float module LLVM.Extra.Scalar -- | The entire purpose of this datatype is to mark a type as scalar, -- although it might also be interpreted as vector. This way you can -- write generic operations for vectors using the PseudoModule -- class, and specialise them to scalar types with respect to the -- PseudoRing class. From another perspective you can consider the -- T type constructor a marker where the Scalar type -- function stops reducing nested vector types to scalar types. newtype T a Cons :: a -> T a decons :: T a -> a liftM :: Monad m => (a -> m b) -> T a -> m (T b) liftM2 :: Monad m => (a -> b -> m c) -> T a -> T b -> m (T c) unliftM :: Monad m => (T a -> m (T r)) -> a -> m r unliftM2 :: Monad m => (T a -> T b -> m (T r)) -> a -> b -> m r unliftM3 :: Monad m => (T a -> T b -> T c -> m (T r)) -> a -> b -> c -> m r unliftM4 :: Monad m => (T a -> T b -> T c -> T d -> m (T r)) -> a -> b -> c -> d -> m r unliftM5 :: Monad m => (T a -> T b -> T c -> T d -> T e -> m (T r)) -> a -> b -> c -> d -> e -> m r instance Transcendental a => Transcendental (T a) instance Algebraic a => Algebraic (T a) instance Fraction a => Fraction (T a) instance Real a => Real (T a) instance PseudoRing a => PseudoModule (T a) instance Field a => Field (T a) instance PseudoRing a => PseudoRing (T a) instance Additive a => Additive (T a) instance RationalConstant a => RationalConstant (T a) instance IntegerConstant a => IntegerConstant (T a) instance Phi a => Phi (T a) instance Undefined a => Undefined (T a) instance Zero a => Zero (T a) module LLVM.Extra.Memory -- | An implementation of both MakeValueTuple and C must -- ensure that haskellValue is compatible with Stored -- (Struct haskellValue) (which we want to call -- llvmStruct). That is, writing and reading llvmStruct -- by LLVM must be the same as accessing haskellValue by -- Storable methods. ToDo: In future we may also require -- Storable constraint for llvmStruct. -- -- We use a functional dependency in order to let type inference work -- nicely. class (Phi llvmValue, Undefined llvmValue, IsType (Struct llvmValue), IsSized (Struct llvmValue)) => C llvmValue where type family Struct llvmValue :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C llvmValue => Value (Ptr (Struct llvmValue)) -> CodeGenFunction r llvmValue store :: C llvmValue => llvmValue -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () decompose :: C llvmValue => Value (Struct llvmValue) -> CodeGenFunction r llvmValue compose :: C llvmValue => llvmValue -> CodeGenFunction r (Value (Struct llvmValue)) modify :: C llvmValue => (llvmValue -> CodeGenFunction r llvmValue) -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () castStorablePtr :: (MakeValueTuple haskellValue, C (ValueTuple haskellValue)) => Ptr haskellValue -> Ptr (Struct (ValueTuple haskellValue)) type Record r o v = Element r o v v data Element r o v x element :: (C x, GetValue o n, ValueType o n ~ Struct x, GetElementPtr o (n, ()), ElementPtrType o (n, ()) ~ Struct x) => (v -> x) -> n -> Element r o v x loadRecord :: Record r o llvmValue -> Value (Ptr o) -> CodeGenFunction r llvmValue storeRecord :: Record r o llvmValue -> llvmValue -> Value (Ptr o) -> CodeGenFunction r () decomposeRecord :: Record r o llvmValue -> Value o -> CodeGenFunction r llvmValue composeRecord :: IsType o => Record r o llvmValue -> llvmValue -> CodeGenFunction r (Value o) loadNewtype :: C a => (a -> llvmValue) -> Value (Ptr (Struct a)) -> CodeGenFunction r llvmValue storeNewtype :: C a => (llvmValue -> a) -> llvmValue -> Value (Ptr (Struct a)) -> CodeGenFunction r () decomposeNewtype :: C a => (a -> llvmValue) -> Value (Struct a) -> CodeGenFunction r llvmValue composeNewtype :: C a => (llvmValue -> a) -> llvmValue -> CodeGenFunction r (Value (Struct a)) class (IsFirstClass llvmType, IsType (Stored llvmType)) => FirstClass llvmType where type family Stored llvmType :: * instance C n a => C (T n a) instance C a => C (T a) instance (FirstClass a, IsSized (Stored a)) => C (Value a) instance (sm ~ StoredStruct s, IsType (Struct s), IsType (Struct sm)) => ConvertStruct s i () instance (sm ~ StoredStruct s, FirstClass a, am ~ Stored a, GetValue (Struct s) (Proxy i), GetValue (Struct sm) (Proxy i), ValueType (Struct s) (Proxy i) ~ a, ValueType (Struct sm) (Proxy i) ~ am, ConvertStruct s (Succ i) rem) => ConvertStruct s i (a, rem) instance (IsFirstClass (Struct s), IsType (Struct (StoredStruct s)), ConvertStruct s D0 s) => FirstClass (Struct s) instance FirstClass (StablePtr a) instance IsFunction a => FirstClass (FunPtr a) instance IsType a => FirstClass (Ptr a) instance (Natural n, IsFirstClass (Stored a), FirstClass a, IsSized a, IsSized (Stored a)) => FirstClass (Array n a) instance (Positive n, IsPrimitive a, IsPrimitive (Stored a), FirstClass a) => FirstClass (Vector n a) instance FirstClass Bool instance FirstClass Word64 instance FirstClass Word32 instance FirstClass Word16 instance FirstClass Word8 instance FirstClass Int64 instance FirstClass Int32 instance FirstClass Int16 instance FirstClass Int8 instance FirstClass Double instance FirstClass Float instance C a => C (T a) instance (C a, C b) => C (T a b) instance C a => C (T a) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance Applicative (Element r o v) instance Functor (Element r o v) instance C () -- | Maybe transformer datatype implemented in continuation passing style. module LLVM.Extra.MaybeContinuation -- | Isomorphic to ReaderT (CodeGenFunction r z) (ContT z -- (CodeGenFunction r)) a, where the reader provides the block for -- Nothing and the continuation part manages the Just. newtype T r z a Cons :: (CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z) -> T r z a resolve :: T r z a -> CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z map :: (a -> CodeGenFunction r b) -> T r z a -> T r z b -- | counterpart to Data.Maybe.HT.toMaybe withBool :: Phi z => Value Bool -> CodeGenFunction r a -> T r z a fromBool :: Phi z => CodeGenFunction r (Value Bool, a) -> T r z a toBool :: Undefined a => T r (Value Bool, a) a -> CodeGenFunction r (Value Bool, a) fromMaybe :: Phi z => CodeGenFunction r (T a) -> T r z a toMaybe :: Undefined a => T r (T a) a -> CodeGenFunction r (T a) isJust :: T r (Value Bool) a -> CodeGenFunction r (Value Bool) lift :: CodeGenFunction r a -> T r z a guard :: Phi z => Value Bool -> T r z () bind :: T r z a -> (a -> T r z b) -> T r z b -- | Run an exception handler if the Maybe-action fails. The exception is -- propagated. That is, the handler is intended for a cleanup procedure. onFail :: CodeGenFunction r () -> T r z a -> T r z a -- | Run the first action and if that fails run the second action. If both -- actions fail, then the composed action fails, too. alternative :: (Phi z, Undefined a) => T r (T a) a -> T r (T a) a -> T r z a fixedLengthLoop :: (Phi s, Undefined s, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> s -> (s -> T r (T s) s) -> CodeGenFunction r (Value i, T s) -- | If the returned position is smaller than the array size, then returned -- final state is nothing. arrayLoop :: (Phi s, Undefined s, IsType a, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> T r (T (Value (Ptr a), s)) s) -> CodeGenFunction r (Value i, T s) arrayLoop2 :: (Phi s, Undefined s, IsType a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> T r (T (Value (Ptr a), (Value (Ptr b), s))) s) -> CodeGenFunction r (Value i, T s) instance MonadIO (T r z) instance Monad (T r z) instance Applicative (T r z) instance Functor (T r z) module LLVM.Extra.Multi.Class class C value where type family Size value :: * switch :: C value => f T -> f (T (Size value)) -> f value newtype Const a value Const :: value a -> Const a value getConst :: Const a value -> value a undef :: (C value, Size value ~ n, Positive n, C a) => value a zero :: (C value, Size value ~ n, Positive n, C a) => value a newtype Op0 r a value Op0 :: CodeGenFunction r (value a) -> Op0 r a value runOp0 :: Op0 r a value -> CodeGenFunction r (value a) newtype Op1 r a b value Op1 :: (value a -> CodeGenFunction r (value b)) -> Op1 r a b value runOp1 :: Op1 r a b value -> value a -> CodeGenFunction r (value b) newtype Op2 r a b c value Op2 :: (value a -> value b -> CodeGenFunction r (value c)) -> Op2 r a b c value runOp2 :: Op2 r a b c value -> value a -> value b -> CodeGenFunction r (value c) add :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) sub :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) neg :: (Positive n, Additive a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) mul :: (Positive n, PseudoRing a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) fdiv :: (Positive n, Field a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) scale :: (Positive n, PseudoModule v, n ~ Size value, C value) => value (Scalar v) -> value v -> CodeGenFunction r (value v) min :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) max :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) abs :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) signum :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) truncate :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) fraction :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) sqrt :: (Positive n, Algebraic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pi :: (Positive n, Transcendental a, n ~ Size value, C value) => CodeGenFunction r (value a) sin :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) log :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) exp :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) cos :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pow :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) cmp :: (Positive n, Comparison a, n ~ Size value, C value) => CmpPredicate -> value a -> value a -> CodeGenFunction r (value Bool) fcmp :: (Positive n, FloatingComparison a, n ~ Size value, C value) => FPPredicate -> value a -> value a -> CodeGenFunction r (value Bool) and :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) xor :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) or :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) inv :: (Positive n, Logic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) instance Positive n => C (T n) instance C T