-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Utility functions for the llvm interface -- -- The Low-Level Virtual-Machine is a compiler back-end with optimizer. -- You may also call it a high-level portable assembler. This package -- provides various utility functions for the Haskell interface to LLVM, -- for example: -- --
-- newtype Fixed = Fixed Int32 ---- -- and then use the same methods for floating point and fixed point -- arithmetic. -- -- In contrast to the arithmetic methods in the llvm wrapper, in -- our methods the types of operands and result match. Advantage: Type -- inference determines most of the types automatically. Disadvantage: -- You cannot use constant values directly, but you have to convert them -- all to Value. class Zero a => Additive a zero :: Additive a => a add :: Additive a => a -> a -> CodeGenFunction r a sub :: Additive a => a -> a -> CodeGenFunction r a neg :: Additive a => a -> CodeGenFunction r a one :: IntegerConstant a => a inc :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) dec :: (IsArithmetic a, IsConst a, Num a) => Value a -> CodeGenFunction r (Value a) class Additive a => PseudoRing a mul :: PseudoRing a => a -> a -> CodeGenFunction r a square :: PseudoRing a => a -> CodeGenFunction r a class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => Scalar v -> v -> CodeGenFunction r v class PseudoRing a => Field a fdiv :: Field a => a -> a -> CodeGenFunction r a class IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> a -- | In Haskell terms this is a quot. idiv :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) irem :: IsInteger a => Value a -> Value a -> CodeGenFunction r (Value a) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> a -> a -> CodeGenFunction r (CmpResult a) class Comparison a where type family CmpResult a :: * cmp :: Comparison a => CmpPredicate -> a -> a -> CodeGenFunction r (CmpResult a) data CmpPredicate :: * -- | equal CmpEQ :: CmpPredicate -- | not equal CmpNE :: CmpPredicate -- | greater than CmpGT :: CmpPredicate -- | greater or equal CmpGE :: CmpPredicate -- | less than CmpLT :: CmpPredicate -- | less or equal CmpLE :: CmpPredicate class Logic a and :: Logic a => a -> a -> CodeGenFunction r a or :: Logic a => a -> a -> CodeGenFunction r a xor :: Logic a => a -> a -> CodeGenFunction r a inv :: Logic a => a -> CodeGenFunction r a class Additive a => Real a min :: Real a => a -> a -> CodeGenFunction r a max :: Real a => a -> a -> CodeGenFunction r a abs :: Real a => a -> CodeGenFunction r a signum :: Real a => a -> CodeGenFunction r a class Real a => Fraction a truncate :: Fraction a => a -> CodeGenFunction r a fraction :: Fraction a => a -> CodeGenFunction r a signedFraction :: Fraction a => a -> CodeGenFunction r a addToPhase :: Fraction a => a -> a -> CodeGenFunction r a -- | both increment and phase must be non-negative incPhase :: Fraction a => a -> a -> CodeGenFunction r a advanceArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) decreaseArrayElementPtr :: Value (Ptr a) -> CodeGenFunction r (Value (Ptr a)) class Field a => Algebraic a sqrt :: Algebraic a => a -> CodeGenFunction r a class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r a sin, log, exp, cos :: Transcendental a => a -> CodeGenFunction r a pow :: Transcendental a => a -> a -> CodeGenFunction r a instance (IsFloating a, TranscendentalConstant a) => Transcendental (Value a) instance IsFloating a => Algebraic (Value a) instance IsInteger a => Logic (ConstValue a) instance IsInteger a => Logic (Value a) instance (IsFloating a, CmpRet a) => FloatingComparison (ConstValue a) instance (IsFloating a, CmpRet a) => FloatingComparison (Value a) instance CmpRet a => Comparison (ConstValue a) instance CmpRet a => Comparison (Value a) instance Fraction a => Fraction (Value a) instance Real a => Real (Value a) instance RationalConstant a => RationalConstant (Value a) instance RationalConstant a => RationalConstant (ConstValue a) instance IsFloating v => Field (ConstValue v) instance IsFloating v => Field (Value v) instance IntegerConstant a => IntegerConstant (Value a) instance IntegerConstant a => IntegerConstant (ConstValue a) instance PseudoModule v => PseudoModule (ConstValue v) instance PseudoModule v => PseudoModule (Value v) instance IsArithmetic v => PseudoRing (ConstValue v) instance IsArithmetic v => PseudoRing (Value v) instance (Additive a, Additive b, Additive c) => Additive (a, b, c) instance (Additive a, Additive b) => Additive (a, b) instance IsArithmetic a => Additive (ConstValue a) instance IsArithmetic a => Additive (Value a) module LLVM.Extra.Scalar -- | The entire purpose of this datatype is to mark a type as scalar, -- although it might also be interpreted as vector. This way you can -- write generic operations for vectors using the PseudoModule -- class, and specialise them to scalar types with respect to the -- PseudoRing class. From another perspective you can consider the -- T type constructor a marker where the Scalar type -- function stops reducing nested vector types to scalar types. newtype T a Cons :: a -> T a decons :: T a -> a liftM :: Monad m => (a -> m b) -> T a -> m (T b) liftM2 :: Monad m => (a -> b -> m c) -> T a -> T b -> m (T c) unliftM :: Monad m => (T a -> m (T r)) -> a -> m r unliftM2 :: Monad m => (T a -> T b -> m (T r)) -> a -> b -> m r unliftM3 :: Monad m => (T a -> T b -> T c -> m (T r)) -> a -> b -> c -> m r unliftM4 :: Monad m => (T a -> T b -> T c -> T d -> m (T r)) -> a -> b -> c -> d -> m r unliftM5 :: Monad m => (T a -> T b -> T c -> T d -> T e -> m (T r)) -> a -> b -> c -> d -> e -> m r instance Transcendental a => Transcendental (T a) instance Algebraic a => Algebraic (T a) instance Fraction a => Fraction (T a) instance Real a => Real (T a) instance PseudoRing a => PseudoModule (T a) instance Field a => Field (T a) instance PseudoRing a => PseudoRing (T a) instance Additive a => Additive (T a) instance RationalConstant a => RationalConstant (T a) instance IntegerConstant a => IntegerConstant (T a) instance Phi a => Phi (T a) instance Undefined a => Undefined (T a) instance Zero a => Zero (T a) -- | Maybe transformer datatype implemented in continuation passing style. module LLVM.Extra.MaybeContinuation -- | Isomorphic to ReaderT (CodeGenFunction r z) (ContT z -- (CodeGenFunction r)) a, where the reader provides the block for -- Nothing and the continuation part manages the Just. newtype T r z a Cons :: (CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z) -> T r z a resolve :: T r z a -> CodeGenFunction r z -> (a -> CodeGenFunction r z) -> CodeGenFunction r z map :: (a -> CodeGenFunction r b) -> T r z a -> T r z b -- | counterpart to Data.Maybe.HT.toMaybe withBool :: Phi z => Value Bool -> CodeGenFunction r a -> T r z a fromBool :: Phi z => CodeGenFunction r (Value Bool, a) -> T r z a toBool :: Undefined a => T r (Value Bool, a) a -> CodeGenFunction r (Value Bool, a) fromMaybe :: Phi z => CodeGenFunction r (T a) -> T r z a toMaybe :: Undefined a => T r (T a) a -> CodeGenFunction r (T a) isJust :: T r (Value Bool) a -> CodeGenFunction r (Value Bool) lift :: CodeGenFunction r a -> T r z a guard :: Phi z => Value Bool -> T r z () just :: a -> T r z a nothing :: T r z a bind :: T r z a -> (a -> T r z b) -> T r z b -- | Run an exception handler if the Maybe-action fails. The exception is -- propagated. That is, the handler is intended for a cleanup procedure. onFail :: CodeGenFunction r () -> T r z a -> T r z a -- | Run the first action and if that fails run the second action. If both -- actions fail, then the composed action fails, too. alternative :: (Phi z, Undefined a) => T r (T a) a -> T r (T a) a -> T r z a fixedLengthLoop :: (Phi s, Undefined s, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> s -> (s -> T r (T s) s) -> CodeGenFunction r (Value i, T s) -- | If the returned position is smaller than the array size, then returned -- final state is nothing. arrayLoop :: (Phi s, Undefined s, IsType a, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> T r (T (Value (Ptr a), s)) s) -> CodeGenFunction r (Value i, T s) arrayLoop2 :: (Phi s, Undefined s, IsType a, IsType b, Num i, IsConst i, IsInteger i, IsFirstClass i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> T r (T (Value (Ptr a), (Value (Ptr b), s))) s) -> CodeGenFunction r (Value i, T s) instance MonadIO (T r z) instance Monad (T r z) instance Applicative (T r z) instance Functor (T r z) module LLVM.Extra.Iterator -- | Simulates a non-strict list. data T r a Cons :: s -> (forall z. Phi z => s -> T r z (a, s)) -> T r a mapM_ :: (a -> CodeGenFunction r ()) -> T r a -> CodeGenFunction r () mapState_ :: Phi t => (a -> t -> CodeGenFunction r t) -> T r a -> t -> CodeGenFunction r t mapStateM_ :: Phi t => (a -> StateT t (CodeGenFunction r) ()) -> T r a -> StateT t (CodeGenFunction r) () mapWhileState_ :: Phi t => (a -> t -> CodeGenFunction r (Value Bool, t)) -> T r a -> t -> CodeGenFunction r t empty :: T r a singleton :: a -> T r a mapM :: (a -> CodeGenFunction r b) -> T r a -> T r b mapMaybe :: (Phi b, Undefined b) => (a -> CodeGenFunction r (T b)) -> T r a -> T r b catMaybes :: (Phi a, Undefined a) => T r (T a) -> T r a takeWhile :: (a -> CodeGenFunction r (Value Bool)) -> T r a -> T r a -- | Attention: This always performs one function call more than necessary. -- I.e. if f reads from or writes to memory make sure that -- accessing one more pointer is legal. iterate :: (Phi a, Undefined a) => (a -> CodeGenFunction r a) -> a -> T r a cartesianAux :: (Phi a, Phi b, Undefined a, Undefined b) => T r a -> T r b -> T r (T (a, b)) cartesian :: (Phi a, Phi b, Undefined a, Undefined b) => T r a -> T r b -> T r (a, b) countDown :: (Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> T r (Value i) take :: (Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> T r a -> T r a arrayPtrs :: IsType a => Value (Ptr a) -> T r (Value (Ptr a)) fixedLengthLoop :: (Phi s, Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> s -> (s -> CodeGenFunction r s) -> CodeGenFunction r s arrayLoop :: (Phi a, IsType b, Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr b) -> a -> (Value (Ptr b) -> a -> CodeGenFunction r a) -> CodeGenFunction r a arrayLoopWithExit :: (Phi s, IsType a, Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> s -> (Value (Ptr a) -> s -> CodeGenFunction r (Value Bool, s)) -> CodeGenFunction r (Value i, s) arrayLoop2 :: (Phi s, IsType a, IsType b, Num i, IsConst i, IsInteger i, CmpRet i, CmpResult i ~ Bool) => Value i -> Value (Ptr a) -> Value (Ptr b) -> s -> (Value (Ptr a) -> Value (Ptr b) -> s -> CodeGenFunction r s) -> CodeGenFunction r s instance Applicative (T r) instance Functor (T r) module LLVM.Extra.Multi.Vector newtype T n a Cons :: (Repr (Value n) a) -> T n a consPrim :: Repr (Value n) a ~ Value n a => Value (Vector n a) -> T n a deconsPrim :: Repr (Value n) a ~ Value n a => T n a -> Value (Vector n a) class C a => C a cons :: (C a, Positive n) => Vector n a -> T n a undef :: (C a, Positive n) => T n a zero :: (C a, Positive n) => T n a phis :: (C a, Positive n) => BasicBlock -> T n a -> CodeGenFunction r (T n a) addPhis :: (C a, Positive n) => BasicBlock -> T n a -> T n a -> CodeGenFunction r () shuffle :: (C a, Positive n, Positive m) => ConstValue (Vector m Word32) -> T n a -> T n a -> CodeGenFunction r (T m a) extract :: (C a, Positive n) => Value Word32 -> T n a -> CodeGenFunction r (T a) insert :: (C a, Positive n) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) type Value n = Compose Value (Vector n) map :: (Positive n, C a, C b) => (T a -> CodeGenFunction r (T b)) -> (T n a -> CodeGenFunction r (T n b)) zip :: T n a -> T n b -> T n (a, b) zip3 :: T n a -> T n b -> T n c -> T n (a, b, c) unzip :: T n (a, b) -> (T n a, T n b) unzip3 :: T n (a, b, c) -> (T n a, T n b, T n c) replicate :: (Positive n, C a) => T a -> CodeGenFunction r (T n a) iterate :: (Positive n, C a) => (T a -> CodeGenFunction r (T a)) -> T a -> CodeGenFunction r (T n a) take :: (Positive n, Positive m, C a) => T n a -> CodeGenFunction r (T m a) takeRev :: (Positive n, Positive m, C a) => T n a -> CodeGenFunction r (T m a) lift1 :: (Repr (Value n) a -> Repr (Value n) b) -> T n a -> T n b modify :: (Positive n, C a) => Value Word32 -> (T a -> CodeGenFunction r (T a)) -> (T n a -> CodeGenFunction r (T n a)) assemble :: (Positive n, C a) => [T a] -> CodeGenFunction r (T n a) dissect :: (Positive n, C a) => T n a -> CodeGenFunction r [T a] dissectList :: (Positive n, C a) => T n a -> [CodeGenFunction r (T a)] reverse :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) -- | Rotate one element towards the higher elements. -- -- I don't want to call it rotateLeft or rotateRight, because there is no -- prefered layout for the vector elements. In Intel's instruction manual -- vector elements are indexed like the bits, that is from right to left. -- However, when working with Haskell list and enumeration syntax, the -- start index is left. rotateUp :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) rotateDown :: (Positive n, C a) => T n a -> CodeGenFunction r (T n a) shiftUp :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftDown :: (Positive n, C a) => T a -> T n a -> CodeGenFunction r (T a, T n a) shiftUpMultiZero :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftDownMultiZero :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftUpMultiUndef :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) shiftDownMultiUndef :: (Positive n, C a) => Int -> T n a -> CodeGenFunction r (T n a) undefPrimitive :: (Positive n, IsPrimitive al, Repr (Value n) a ~ Value n al) => T n a shufflePrimitive :: (Positive n, Positive m, IsPrimitive al, Repr Value a ~ Value al, Repr (Value n) a ~ Value n al, Repr (Value m) a ~ Value m al) => ConstValue (Vector m Word32) -> T n a -> T n a -> CodeGenFunction r (T m a) extractPrimitive :: (Positive n, IsPrimitive al, Repr Value a ~ Value al, Repr (Value n) a ~ Value n al) => Value Word32 -> T n a -> CodeGenFunction r (T a) insertPrimitive :: (Positive n, IsPrimitive al, Repr Value a ~ Value al, Repr (Value n) a ~ Value n al) => Value Word32 -> T a -> T n a -> CodeGenFunction r (T n a) shuffleMatchTraversable :: (Positive n, C a, Traversable f) => ConstValue (Vector n Word32) -> f (T n a) -> CodeGenFunction r (f (T n a)) insertTraversable :: (Positive n, C a, Traversable f, Applicative f) => Value Word32 -> f (T a) -> f (T n a) -> CodeGenFunction r (f (T n a)) extractTraversable :: (Positive n, C a, Traversable f) => Value Word32 -> f (T n a) -> CodeGenFunction r (f (T a)) class C a => IntegerConstant a fromInteger' :: (IntegerConstant a, Positive n) => Integer -> T n a class IntegerConstant a => RationalConstant a fromRational' :: (RationalConstant a, Positive n) => Rational -> T n a class (Additive a, C a) => Additive a add :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) sub :: (Additive a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) neg :: (Additive a, Positive n) => T n a -> CodeGenFunction r (T n a) class (PseudoRing a, Additive a) => PseudoRing a mul :: (PseudoRing a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (Field a, PseudoRing a) => Field a fdiv :: (Field a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (PseudoModule v, PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: (PseudoModule v, Positive n) => T n (Scalar v) -> T n v -> CodeGenFunction r (T n v) class (Real a, Additive a) => Real a min :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) max :: (Real a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) abs :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) signum :: (Real a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Fraction a, Real a) => Fraction a truncate :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) fraction :: (Fraction a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Algebraic a, Field a) => Algebraic a sqrt :: (Algebraic a, Positive n) => T n a -> CodeGenFunction r (T n a) class (Transcendental a, Algebraic a) => Transcendental a pi :: (Transcendental a, Positive n) => CodeGenFunction r (T n a) sin, log, exp, cos :: (Transcendental a, Positive n) => T n a -> CodeGenFunction r (T n a) pow :: (Transcendental a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) class (FloatingComparison a, Comparison a) => FloatingComparison a fcmp :: (FloatingComparison a, Positive n) => FPPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class C a => Select a select :: (Select a, Positive n) => T n Bool -> T n a -> T n a -> CodeGenFunction r (T n a) class (Comparison a, C a) => Comparison a cmp :: (Comparison a, Positive n) => CmpPredicate -> T n a -> T n a -> CodeGenFunction r (T n Bool) class (Logic a, C a) => Logic a and :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) or :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) xor :: (Logic a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) inv :: (Logic a, Positive n) => T n a -> CodeGenFunction r (T n a) class BitShift a shl :: (BitShift a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) shr :: (BitShift a, Positive n) => T n a -> T n a -> CodeGenFunction r (T n a) instance BitShift Int64 instance BitShift Int32 instance BitShift Int16 instance BitShift Int8 instance BitShift Word64 instance BitShift Word32 instance BitShift Word16 instance BitShift Word8 instance (Positive n, Logic a) => Logic (T n a) instance Logic Word64 instance Logic Word32 instance Logic Word16 instance Logic Word8 instance Logic Bool instance (Positive n, FloatingComparison a) => FloatingComparison (T n a) instance FloatingComparison Float instance (Positive n, Comparison a) => Comparison (T n a) instance Comparison Int64 instance Comparison Int32 instance Comparison Int16 instance Comparison Int8 instance Comparison Word64 instance Comparison Word32 instance Comparison Word16 instance Comparison Word8 instance Comparison Double instance Comparison Float instance (Select a, Select b, Select c) => Select (a, b, c) instance (Select a, Select b) => Select (a, b) instance Select Int64 instance Select Int32 instance Select Int16 instance Select Int8 instance Select Word64 instance Select Word32 instance Select Word16 instance Select Word8 instance Select Bool instance Select Double instance Select Float instance (Positive n, Transcendental a) => Transcendental (T n a) instance Transcendental Double instance Transcendental Float instance (Positive n, Algebraic a) => Algebraic (T n a) instance Algebraic Double instance Algebraic Float instance (Positive n, Fraction a) => Fraction (T n a) instance Fraction Double instance Fraction Float instance (Positive n, Real a) => Real (T n a) instance Real Double instance Real Float instance (Positive n, PseudoModule a) => PseudoModule (T n a) instance PseudoModule Double instance PseudoModule Float instance (Positive n, Field a) => Field (T n a) instance Field Double instance Field Float instance (Positive n, PseudoRing a) => PseudoRing (T n a) instance PseudoRing Double instance PseudoRing Float instance (Positive n, Additive a) => Additive (T n a) instance Additive Word64 instance Additive Word32 instance Additive Word16 instance Additive Word8 instance Additive Int64 instance Additive Int32 instance Additive Int16 instance Additive Int8 instance Additive Double instance Additive Float instance (Positive n, RationalConstant a) => RationalConstant (T n a) instance (Positive n, IntegerConstant a) => IntegerConstant (T n a) instance RationalConstant Double instance RationalConstant Float instance IntegerConstant Int64 instance IntegerConstant Int32 instance IntegerConstant Int16 instance IntegerConstant Int8 instance IntegerConstant Word64 instance IntegerConstant Word32 instance IntegerConstant Word16 instance IntegerConstant Word8 instance IntegerConstant Double instance IntegerConstant Float instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Double instance C Float instance C Bool8 instance C Bool instance (Positive n, C a) => Phi (T n a) instance (Positive n, C a) => Zero (T n a) instance (Positive n, C a) => Undefined (T n a) module LLVM.Extra.Multi.Vector.Instance type MVVector n a = T (Vector n a) toMultiValue :: T n a -> MVVector n a fromMultiValue :: MVVector n a -> T n a liftMultiValueM :: Functor f => (T n a -> f (T m b)) -> (MVVector n a -> f (MVVector m b)) liftMultiValueM2 :: Functor f => (T n a -> T m b -> f (T k c)) -> (MVVector n a -> MVVector m b -> f (MVVector k c)) liftMultiValueM3 :: Functor f => (T n a -> T m b -> T m c -> f (T k d)) -> (MVVector n a -> MVVector m b -> MVVector m c -> f (MVVector k d)) instance (Positive n, BitShift a) => BitShift (Vector n a) instance (Positive n, Logic a) => Logic (Vector n a) instance (Positive n, Additive a) => Additive (Vector n a) instance (Positive n, RationalConstant a) => RationalConstant (Vector n a) instance (Positive n, IntegerConstant a) => IntegerConstant (Vector n a) instance (Positive n, C a) => C (Vector n a) module LLVM.Extra.Multi.Value newtype T a Cons :: (Repr Value a) -> T a class C a where type family Repr (f :: * -> *) a :: * cons :: C a => a -> T a undef :: C a => T a zero :: C a => T a phis :: C a => BasicBlock -> T a -> CodeGenFunction r (T a) addPhis :: C a => BasicBlock -> T a -> T a -> CodeGenFunction r () consPrimitive :: (IsConst al, Value al ~ Repr Value a) => al -> T a undefPrimitive :: (IsType al, Value al ~ Repr Value a) => T a zeroPrimitive :: (IsType al, Value al ~ Repr Value a) => T a phisPrimitive :: (IsFirstClass al, Value al ~ Repr Value a) => BasicBlock -> T a -> CodeGenFunction r (T a) addPhisPrimitive :: (IsFirstClass al, Value al ~ Repr Value a) => BasicBlock -> T a -> T a -> CodeGenFunction r () consUnit :: Repr Value a ~ () => a -> T a undefUnit :: Repr Value a ~ () => T a zeroUnit :: Repr Value a ~ () => T a phisUnit :: Repr Value a ~ () => BasicBlock -> T a -> CodeGenFunction r (T a) addPhisUnit :: Repr Value a ~ () => BasicBlock -> T a -> T a -> CodeGenFunction r () boolPFrom8 :: T Bool8 -> T Bool bool8FromP :: T Bool -> T Bool8 intFromBool8 :: NativeInteger i ir => T Bool8 -> CodeGenFunction r (T i) floatFromBool8 :: NativeFloating a ar => T Bool8 -> CodeGenFunction r (T a) splitMaybe :: T (Maybe a) -> (T Bool, T a) toMaybe :: T Bool -> T a -> T (Maybe a) nothing :: C a => T (Maybe a) just :: T a -> T (Maybe a) fst :: T (a, b) -> T a snd :: T (a, b) -> T b curry :: (T (a, b) -> c) -> (T a -> T b -> c) uncurry :: (T a -> T b -> c) -> (T (a, b) -> c) mapFst :: (T a0 -> T a1) -> T (a0, b) -> T (a1, b) mapSnd :: (T b0 -> T b1) -> T (a, b0) -> T (a, b1) mapFstF :: Functor f => (T a0 -> f (T a1)) -> T (a0, b) -> f (T (a1, b)) mapSndF :: Functor f => (T b0 -> f (T b1)) -> T (a, b0) -> f (T (a, b1)) swap :: T (a, b) -> T (b, a) fst3 :: T (a, b, c) -> T a snd3 :: T (a, b, c) -> T b thd3 :: T (a, b, c) -> T c mapFst3 :: (T a0 -> T a1) -> T (a0, b, c) -> T (a1, b, c) mapSnd3 :: (T b0 -> T b1) -> T (a, b0, c) -> T (a, b1, c) mapThd3 :: (T c0 -> T c1) -> T (a, b, c0) -> T (a, b, c1) mapFst3F :: Functor f => (T a0 -> f (T a1)) -> T (a0, b, c) -> f (T (a1, b, c)) mapSnd3F :: Functor f => (T b0 -> f (T b1)) -> T (a, b0, c) -> f (T (a, b1, c)) mapThd3F :: Functor f => (T c0 -> f (T c1)) -> T (a, b, c0) -> f (T (a, b, c1)) zip :: T a -> T b -> T (a, b) zip3 :: T a -> T b -> T c -> T (a, b, c) zip4 :: T a -> T b -> T c -> T d -> T (a, b, c, d) unzip :: T (a, b) -> (T a, T b) unzip3 :: T (a, b, c) -> (T a, T b, T c) unzip4 :: T (a, b, c, d) -> (T a, T b, T c, T d) consComplex :: T a -> T a -> T (Complex a) deconsComplex :: T (Complex a) -> (T a, T a) class Compose multituple where type family Composed multituple compose :: Compose multituple => multituple -> T (Composed multituple) class Composed (Decomposed T pattern) ~ PatternTuple pattern => Decompose pattern decompose :: Decompose pattern => pattern -> T (PatternTuple pattern) -> Decomposed T pattern -- | A combination of compose and decompose that let you -- operate on tuple multivalues as Haskell tuples. modify :: (Compose a, Decompose pattern) => pattern -> (Decomposed T pattern -> a) -> T (PatternTuple pattern) -> T (Composed a) modify2 :: (Compose a, Decompose patternA, Decompose patternB) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> T (Composed a) modifyF :: (Compose a, Decompose pattern, Functor f) => pattern -> (Decomposed T pattern -> f a) -> T (PatternTuple pattern) -> f (T (Composed a)) modifyF2 :: (Compose a, Decompose patternA, Decompose patternB, Functor f) => patternA -> patternB -> (Decomposed T patternA -> Decomposed T patternB -> f a) -> T (PatternTuple patternA) -> T (PatternTuple patternB) -> f (T (Composed a)) data Atom a Atom :: Atom a atom :: Atom a realPart :: T (Complex a) -> T a imagPart :: T (Complex a) -> T a lift1 :: (Repr Value a -> Repr Value b) -> T a -> T b liftM0 :: Monad m => m (Repr Value a) -> m (T a) liftM :: Monad m => (Repr Value a -> m (Repr Value b)) -> T a -> m (T b) liftM2 :: Monad m => (Repr Value a -> Repr Value b -> m (Repr Value c)) -> T a -> T b -> m (T c) liftM3 :: Monad m => (Repr Value a -> Repr Value b -> Repr Value c -> m (Repr Value d)) -> T a -> T b -> T c -> m (T d) class C a => IntegerConstant a fromInteger' :: IntegerConstant a => Integer -> T a class IntegerConstant a => RationalConstant a fromRational' :: RationalConstant a => Rational -> T a class C a => Additive a add :: Additive a => T a -> T a -> CodeGenFunction r (T a) sub :: Additive a => T a -> T a -> CodeGenFunction r (T a) neg :: Additive a => T a -> CodeGenFunction r (T a) inc :: (Additive i, IntegerConstant i) => T i -> CodeGenFunction r (T i) dec :: (Additive i, IntegerConstant i) => T i -> CodeGenFunction r (T i) class Additive a => PseudoRing a mul :: PseudoRing a => T a -> T a -> CodeGenFunction r (T a) class PseudoRing a => Field a fdiv :: Field a => T a -> T a -> CodeGenFunction r (T a) class (PseudoRing (Scalar v), Additive v) => PseudoModule v scale :: PseudoModule v => T (Scalar v) -> T v -> CodeGenFunction r (T v) class Additive a => Real a min :: Real a => T a -> T a -> CodeGenFunction r (T a) max :: Real a => T a -> T a -> CodeGenFunction r (T a) abs :: Real a => T a -> CodeGenFunction r (T a) signum :: Real a => T a -> CodeGenFunction r (T a) class Real a => Fraction a truncate :: Fraction a => T a -> CodeGenFunction r (T a) fraction :: Fraction a => T a -> CodeGenFunction r (T a) class (Repr Value i ~ Value ir, IsInteger ir, IntegerConstant ir, CmpRet ir, NumberOfElements ir ~ D1, CmpResult ir ~ Bool) => NativeInteger i ir class (Repr Value a ~ Value ar, IsFloating ar, RationalConstant ar, CmpRet ar, NumberOfElements ar ~ D1, CmpResult ar ~ Bool) => NativeFloating a ar truncateToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) roundToIntFast :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) ceilingToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) floorToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T i) splitFractionToInt :: (NativeInteger i ir, NativeFloating a ar) => T a -> CodeGenFunction r (T (i, a)) class Field a => Algebraic a sqrt :: Algebraic a => T a -> CodeGenFunction r (T a) class Algebraic a => Transcendental a pi :: Transcendental a => CodeGenFunction r (T a) sin, log, exp, cos :: Transcendental a => T a -> CodeGenFunction r (T a) pow :: Transcendental a => T a -> T a -> CodeGenFunction r (T a) class C a => Select a select :: Select a => T Bool -> T a -> T a -> CodeGenFunction r (T a) class Real a => Comparison a cmp :: Comparison a => CmpPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class Comparison a => FloatingComparison a fcmp :: FloatingComparison a => FPPredicate -> T a -> T a -> CodeGenFunction r (T Bool) class C a => Logic a and :: Logic a => T a -> T a -> CodeGenFunction r (T a) or :: Logic a => T a -> T a -> CodeGenFunction r (T a) xor :: Logic a => T a -> T a -> CodeGenFunction r (T a) inv :: Logic a => T a -> CodeGenFunction r (T a) class BitShift a shl :: BitShift a => T a -> T a -> CodeGenFunction r (T a) shr :: BitShift a => T a -> T a -> CodeGenFunction r (T a) class PseudoRing a => Integral a idiv :: Integral a => T a -> T a -> CodeGenFunction r (T a) irem :: Integral a => T a -> T a -> CodeGenFunction r (T a) fromIntegral :: (NativeInteger i ir, NativeFloating a ar) => T i -> CodeGenFunction r (T a) module LLVM.Extra.Multi.Value.Memory class (C a, IsSized (Struct a)) => C a where type family Struct a :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C a => Value (Ptr (Struct a)) -> CodeGenFunction r (T a) store :: C a => T a -> Value (Ptr (Struct a)) -> CodeGenFunction r () decompose :: C a => Value (Struct a) -> CodeGenFunction r (T a) compose :: C a => T a -> CodeGenFunction r (Value (Struct a)) loadPrimitive :: Repr Value a ~ Value al => Value (Ptr al) -> CodeGenFunction r (T a) storePrimitive :: Repr Value a ~ Value al => T a -> Value (Ptr al) -> CodeGenFunction r () decomposePrimitive :: Repr Value a ~ Value al => Value al -> CodeGenFunction r (T a) composePrimitive :: Repr Value a ~ Value al => T a -> CodeGenFunction r (Value al) loadUnit :: Repr Value a ~ () => Value (Ptr (Struct ())) -> CodeGenFunction r (T a) storeUnit :: T a -> Value (Ptr (Struct ())) -> CodeGenFunction r () decomposeUnit :: Repr Value a ~ () => Value (Struct ()) -> CodeGenFunction r (T a) composeUnit :: T a -> CodeGenFunction r (Value (Struct ())) castStructPtr :: Ptr a -> Ptr (Struct a) instance (C a, C b, C c, C d) => C (a, b, c, d) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance C a => C (Complex a) instance C () instance C (StablePtr a) instance IsFunction a => C (FunPtr a) instance IsType a => C (Ptr a) instance C Int64 instance C Int32 instance C Int16 instance C Int8 instance C Word64 instance C Word32 instance C Word16 instance C Word8 instance C Double instance C Float instance C Bool8 module LLVM.Extra.Multi.Vector.Memory class (Positive n, C a, IsSized (Struct n a)) => C n a where type family Struct n a :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C n a => Value (Ptr (Struct n a)) -> CodeGenFunction r (T n a) store :: C n a => T n a -> Value (Ptr (Struct n a)) -> CodeGenFunction r () decompose :: C n a => Value (Struct n a) -> CodeGenFunction r (T n a) compose :: C n a => T n a -> CodeGenFunction r (Value (Struct n a)) instance C n a => C (Vector n a) instance (C n a, C n b, C n c) => C n (a, b, c) instance (C n a, C n b) => C n (a, b) instance (Positive n, Positive (n :*: D64)) => C n Double instance (Positive n, Positive (n :*: D32)) => C n Float instance (Positive n, Positive (n :*: D64)) => C n Int64 instance (Positive n, Positive (n :*: D32)) => C n Int32 instance (Positive n, Positive (n :*: D16)) => C n Int16 instance (Positive n, Positive (n :*: D8)) => C n Int8 instance (Positive n, Positive (n :*: D64)) => C n Word64 instance (Positive n, Positive (n :*: D32)) => C n Word32 instance (Positive n, Positive (n :*: D16)) => C n Word16 instance (Positive n, Positive (n :*: D8)) => C n Word8 module LLVM.Extra.Memory -- | An implementation of both MakeValueTuple and C must -- ensure that haskellValue is compatible with Stored -- (Struct haskellValue) (which we want to call -- llvmStruct). That is, writing and reading llvmStruct -- by LLVM must be the same as accessing haskellValue by -- Storable methods. ToDo: In future we may also require -- Storable constraint for llvmStruct. -- -- We use a functional dependency in order to let type inference work -- nicely. class (Phi llvmValue, Undefined llvmValue, IsType (Struct llvmValue), IsSized (Struct llvmValue)) => C llvmValue where type family Struct llvmValue :: * load ptr = decompose =<< load ptr store r ptr = flip store ptr =<< compose r decompose = decomposeFromLoad load compose = composeFromStore store load :: C llvmValue => Value (Ptr (Struct llvmValue)) -> CodeGenFunction r llvmValue store :: C llvmValue => llvmValue -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () decompose :: C llvmValue => Value (Struct llvmValue) -> CodeGenFunction r llvmValue compose :: C llvmValue => llvmValue -> CodeGenFunction r (Value (Struct llvmValue)) modify :: C llvmValue => (llvmValue -> CodeGenFunction r llvmValue) -> Value (Ptr (Struct llvmValue)) -> CodeGenFunction r () -- | Deprecated: use castTuplePtr instead castStorablePtr :: (MakeValueTuple haskellValue, C (ValueTuple haskellValue)) => Ptr haskellValue -> Ptr (Struct (ValueTuple haskellValue)) castTuplePtr :: (MakeValueTuple haskellValue, C (ValueTuple haskellValue)) => Ptr haskellValue -> Ptr (Struct (ValueTuple haskellValue)) type Record r o v = Element r o v v data Element r o v x element :: (C x, GetValue o n, ValueType o n ~ Struct x, GetElementPtr o (n, ()), ElementPtrType o (n, ()) ~ Struct x) => (v -> x) -> n -> Element r o v x loadRecord :: Record r o llvmValue -> Value (Ptr o) -> CodeGenFunction r llvmValue storeRecord :: Record r o llvmValue -> llvmValue -> Value (Ptr o) -> CodeGenFunction r () decomposeRecord :: Record r o llvmValue -> Value o -> CodeGenFunction r llvmValue composeRecord :: IsType o => Record r o llvmValue -> llvmValue -> CodeGenFunction r (Value o) loadNewtype :: C a => (a -> llvmValue) -> Value (Ptr (Struct a)) -> CodeGenFunction r llvmValue storeNewtype :: C a => (llvmValue -> a) -> llvmValue -> Value (Ptr (Struct a)) -> CodeGenFunction r () decomposeNewtype :: C a => (a -> llvmValue) -> Value (Struct a) -> CodeGenFunction r llvmValue composeNewtype :: C a => (llvmValue -> a) -> llvmValue -> CodeGenFunction r (Value (Struct a)) class (IsFirstClass llvmType, IsType (Stored llvmType)) => FirstClass llvmType where type family Stored llvmType :: * instance C n a => C (T n a) instance C a => C (T a) instance (FirstClass a, IsSized (Stored a)) => C (Value a) instance (sm ~ StoredStruct s, IsType (Struct s), IsType (Struct sm)) => ConvertStruct s i () instance (sm ~ StoredStruct s, FirstClass a, am ~ Stored a, GetValue (Struct s) (Proxy i), GetValue (Struct sm) (Proxy i), ValueType (Struct s) (Proxy i) ~ a, ValueType (Struct sm) (Proxy i) ~ am, ConvertStruct s (Succ i) rem) => ConvertStruct s i (a, rem) instance (IsFirstClass (Struct s), IsType (Struct (StoredStruct s)), ConvertStruct s D0 s) => FirstClass (Struct s) instance FirstClass (StablePtr a) instance IsFunction a => FirstClass (FunPtr a) instance IsType a => FirstClass (Ptr a) instance (Natural n, IsFirstClass (Stored a), FirstClass a, IsSized a, IsSized (Stored a)) => FirstClass (Array n a) instance (Positive n, IsPrimitive a, IsPrimitive (Stored a), FirstClass a) => FirstClass (Vector n a) instance FirstClass Bool instance FirstClass Word64 instance FirstClass Word32 instance FirstClass Word16 instance FirstClass Word8 instance FirstClass Int64 instance FirstClass Int32 instance FirstClass Int16 instance FirstClass Int8 instance FirstClass Double instance FirstClass Float instance C a => C (T a) instance (C a, C b) => C (T a b) instance C a => C (T a) instance (C a, C b, C c) => C (a, b, c) instance (C a, C b) => C (a, b) instance Applicative (Element r o v) instance Functor (Element r o v) instance C () module LLVM.Extra.Multi.Iterator takeWhile :: (a -> CodeGenFunction r (T Bool)) -> T r a -> T r a countDown :: (Additive i, Comparison i, IntegerConstant i) => T i -> T r (T i) take :: (Additive i, Comparison i, IntegerConstant i) => T i -> T r a -> T r a module LLVM.Extra.Multi.Value.Vector cons :: (Positive n, C a) => Vector n a -> T (Vector n a) fst :: T (Vector n (a, b)) -> T (Vector n a) snd :: T (Vector n (a, b)) -> T (Vector n b) fst3 :: T (Vector n (a, b, c)) -> T (Vector n a) snd3 :: T (Vector n (a, b, c)) -> T (Vector n b) thd3 :: T (Vector n (a, b, c)) -> T (Vector n c) zip :: T (Vector n a) -> T (Vector n b) -> T (Vector n (a, b)) zip3 :: T (Vector n a) -> T (Vector n b) -> T (Vector n c) -> T (Vector n (a, b, c)) unzip :: T (Vector n (a, b)) -> (T (Vector n a), T (Vector n b)) unzip3 :: T (Vector n (a, b, c)) -> (T (Vector n a), T (Vector n b), T (Vector n c)) swap :: T (Vector n (a, b)) -> T (Vector n (b, a)) mapFst :: (T (Vector n a0) -> T (Vector n a1)) -> T (Vector n (a0, b)) -> T (Vector n (a1, b)) mapSnd :: (T (Vector n b0) -> T (Vector n b1)) -> T (Vector n (a, b0)) -> T (Vector n (a, b1)) mapFst3 :: (T (Vector n a0) -> T (Vector n a1)) -> T (Vector n (a0, b, c)) -> T (Vector n (a1, b, c)) mapSnd3 :: (T (Vector n b0) -> T (Vector n b1)) -> T (Vector n (a, b0, c)) -> T (Vector n (a, b1, c)) mapThd3 :: (T (Vector n c0) -> T (Vector n c1)) -> T (Vector n (a, b, c0)) -> T (Vector n (a, b, c1)) extract :: (Positive n, C a) => Value Word32 -> T (Vector n a) -> CodeGenFunction r (T a) insert :: (Positive n, C a) => Value Word32 -> T a -> T (Vector n a) -> CodeGenFunction r (T (Vector n a)) replicate :: (Positive n, C a) => T a -> CodeGenFunction r (T (Vector n a)) dissect :: (Positive n, C a) => T (Vector n a) -> CodeGenFunction r [T a] select :: (Positive n, Select a) => T (Vector n Bool) -> T (Vector n a) -> T (Vector n a) -> CodeGenFunction r (T (Vector n a)) cmp :: (Positive n, Comparison a) => CmpPredicate -> T (Vector n a) -> T (Vector n a) -> CodeGenFunction r (T (Vector n Bool)) take :: (Positive n, Positive m, C a) => T (Vector n a) -> CodeGenFunction r (T (Vector m a)) takeRev :: (Positive n, Positive m, C a) => T (Vector n a) -> CodeGenFunction r (T (Vector m a)) module LLVM.Extra.Multi.Class class C value where type family Size value :: * switch :: C value => f T -> f (T (Size value)) -> f value newtype Const a value Const :: value a -> Const a value getConst :: Const a value -> value a undef :: (C value, Size value ~ n, Positive n, C a) => value a zero :: (C value, Size value ~ n, Positive n, C a) => value a newtype Op0 r a value Op0 :: CodeGenFunction r (value a) -> Op0 r a value runOp0 :: Op0 r a value -> CodeGenFunction r (value a) newtype Op1 r a b value Op1 :: (value a -> CodeGenFunction r (value b)) -> Op1 r a b value runOp1 :: Op1 r a b value -> value a -> CodeGenFunction r (value b) newtype Op2 r a b c value Op2 :: (value a -> value b -> CodeGenFunction r (value c)) -> Op2 r a b c value runOp2 :: Op2 r a b c value -> value a -> value b -> CodeGenFunction r (value c) add :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) sub :: (Positive n, Additive a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) neg :: (Positive n, Additive a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) mul :: (Positive n, PseudoRing a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) fdiv :: (Positive n, Field a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) scale :: (Positive n, PseudoModule v, n ~ Size value, C value) => value (Scalar v) -> value v -> CodeGenFunction r (value v) min :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) max :: (Positive n, Real a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) abs :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) signum :: (Positive n, Real a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) truncate :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) fraction :: (Positive n, Fraction a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) sqrt :: (Positive n, Algebraic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pi :: (Positive n, Transcendental a, n ~ Size value, C value) => CodeGenFunction r (value a) sin :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) log :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) exp :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) cos :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) pow :: (Positive n, Transcendental a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) cmp :: (Positive n, Comparison a, n ~ Size value, C value) => CmpPredicate -> value a -> value a -> CodeGenFunction r (value Bool) fcmp :: (Positive n, FloatingComparison a, n ~ Size value, C value) => FPPredicate -> value a -> value a -> CodeGenFunction r (value Bool) and :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) xor :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) or :: (Positive n, Logic a, n ~ Size value, C value) => value a -> value a -> CodeGenFunction r (value a) inv :: (Positive n, Logic a, n ~ Size value, C value) => value a -> CodeGenFunction r (value a) instance Positive n => C (T n) instance C T