//===- llvm/CallingConv.h - LLVM Calling Conventions ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines LLVM's set of calling conventions. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_CALLINGCONV_H #define LLVM_IR_CALLINGCONV_H namespace llvm { /// CallingConv Namespace - This namespace contains an enum with a value for /// the well-known calling conventions. /// namespace CallingConv { /// LLVM IR allows to use arbitrary numbers as calling convention identifiers. using ID = unsigned; /// A set of enums which specify the assigned numeric values for known llvm /// calling conventions. /// LLVM Calling Convention Representation enum { /// The default llvm calling convention, compatible with C. This convention /// is the only one that supports varargs calls. As with typical C calling /// conventions, the callee/caller have to tolerate certain amounts of /// prototype mismatch. C = 0, // Generic LLVM calling conventions. None of these support varargs calls, // and all assume that the caller and callee prototype exactly match. /// Attempts to make calls as fast as possible (e.g. by passing things in /// registers). Fast = 8, /// Attempts to make code in the caller as efficient as possible under the /// assumption that the call is not commonly executed. As such, these calls /// often preserve all registers so that the call does not break any live /// ranges in the caller side. Cold = 9, /// Used by the Glasgow Haskell Compiler (GHC). GHC = 10, /// Used by the High-Performance Erlang Compiler (HiPE). HiPE = 11, /// Used for stack based JavaScript calls WebKit_JS = 12, /// Used for dynamic register based calls (e.g. stackmap and patchpoint /// intrinsics). AnyReg = 13, /// Used for runtime calls that preserves most registers. PreserveMost = 14, /// Used for runtime calls that preserves (almost) all registers. PreserveAll = 15, /// Calling convention for Swift. Swift = 16, /// Used for access functions. CXX_FAST_TLS = 17, /// Attemps to make calls as fast as possible while guaranteeing that tail /// call optimization can always be performed. Tail = 18, /// Special calling convention on Windows for calling the Control Guard /// Check ICall funtion. The function takes exactly one argument (address of /// the target function) passed in the first argument register, and has no /// return value. All register values are preserved. CFGuard_Check = 19, /// This follows the Swift calling convention in how arguments are passed /// but guarantees tail calls will be made by making the callee clean up /// their stack. SwiftTail = 20, /// This is the start of the target-specific calling conventions, e.g. /// fastcall and thiscall on X86. FirstTargetCC = 64, /// stdcall is mostly used by the Win32 API. It is basically the same as the /// C convention with the difference in that the callee is responsible for /// popping the arguments from the stack. X86_StdCall = 64, /// 'fast' analog of X86_StdCall. Passes first two arguments in ECX:EDX /// registers, others - via stack. Callee is responsible for stack cleaning. X86_FastCall = 65, /// ARM Procedure Calling Standard (obsolete, but still used on some /// targets). ARM_APCS = 66, /// ARM Architecture Procedure Calling Standard calling convention (aka /// EABI). Soft float variant. ARM_AAPCS = 67, /// Same as ARM_AAPCS, but uses hard floating point ABI. ARM_AAPCS_VFP = 68, /// Used for MSP430 interrupt routines. MSP430_INTR = 69, /// Similar to X86_StdCall. Passes first argument in ECX, others via stack. /// Callee is responsible for stack cleaning. MSVC uses this by default for /// methods in its ABI. X86_ThisCall = 70, /// Call to a PTX kernel. Passes all arguments in parameter space. PTX_Kernel = 71, /// Call to a PTX device function. Passes all arguments in register or /// parameter space. PTX_Device = 72, /// Used for SPIR non-kernel device functions. No lowering or expansion of /// arguments. Structures are passed as a pointer to a struct with the /// byval attribute. Functions can only call SPIR_FUNC and SPIR_KERNEL /// functions. Functions can only have zero or one return values. Variable /// arguments are not allowed, except for printf. How arguments/return /// values are lowered are not specified. Functions are only visible to the /// devices. SPIR_FUNC = 75, /// Used for SPIR kernel functions. Inherits the restrictions of SPIR_FUNC, /// except it cannot have non-void return values, it cannot have variable /// arguments, it can also be called by the host or it is externally /// visible. SPIR_KERNEL = 76, /// Used for Intel OpenCL built-ins. Intel_OCL_BI = 77, /// The C convention as specified in the x86-64 supplement to the System V /// ABI, used on most non-Windows systems. X86_64_SysV = 78, /// The C convention as implemented on Windows/x86-64 and AArch64. It /// differs from the more common \c X86_64_SysV convention in a number of /// ways, most notably in that XMM registers used to pass arguments are /// shadowed by GPRs, and vice versa. On AArch64, this is identical to the /// normal C (AAPCS) calling convention for normal functions, but floats are /// passed in integer registers to variadic functions. Win64 = 79, /// MSVC calling convention that passes vectors and vector aggregates in SSE /// registers. X86_VectorCall = 80, /// Used by HipHop Virtual Machine (HHVM) to perform calls to and from /// translation cache, and for calling PHP functions. HHVM calling /// convention supports tail/sibling call elimination. HHVM = 81, /// HHVM calling convention for invoking C/C++ helpers. HHVM_C = 82, /// x86 hardware interrupt context. Callee may take one or two parameters, /// where the 1st represents a pointer to hardware context frame and the 2nd /// represents hardware error code, the presence of the later depends on the /// interrupt vector taken. Valid for both 32- and 64-bit subtargets. X86_INTR = 83, /// Used for AVR interrupt routines. AVR_INTR = 84, /// Used for AVR signal routines. AVR_SIGNAL = 85, /// Used for special AVR rtlib functions which have an "optimized" /// convention to preserve registers. AVR_BUILTIN = 86, /// Used for Mesa vertex shaders, or AMDPAL last shader stage before /// rasterization (vertex shader if tessellation and geometry are not in /// use, or otherwise copy shader if one is needed). AMDGPU_VS = 87, /// Used for Mesa/AMDPAL geometry shaders. AMDGPU_GS = 88, /// Used for Mesa/AMDPAL pixel shaders. AMDGPU_PS = 89, /// Used for Mesa/AMDPAL compute shaders. AMDGPU_CS = 90, /// Used for AMDGPU code object kernels. AMDGPU_KERNEL = 91, /// Register calling convention used for parameters transfer optimization X86_RegCall = 92, /// Used for Mesa/AMDPAL hull shaders (= tessellation control shaders). AMDGPU_HS = 93, /// Used for special MSP430 rtlib functions which have an "optimized" /// convention using additional registers. MSP430_BUILTIN = 94, /// Used for AMDPAL vertex shader if tessellation is in use. AMDGPU_LS = 95, /// Used for AMDPAL shader stage before geometry shader if geometry is in /// use. So either the domain (= tessellation evaluation) shader if /// tessellation is in use, or otherwise the vertex shader. AMDGPU_ES = 96, /// Used between AArch64 Advanced SIMD functions AArch64_VectorCall = 97, /// Used between AArch64 SVE functions AArch64_SVE_VectorCall = 98, /// For emscripten __invoke_* functions. The first argument is required to /// be the function ptr being indirectly called. The remainder matches the /// regular calling convention. WASM_EmscriptenInvoke = 99, /// Used for AMD graphics targets. AMDGPU_Gfx = 100, /// Used for M68k interrupt routines. M68k_INTR = 101, /// Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15. AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 = 102, /// Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15. AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 = 103, /// The highest possible ID. Must be some 2^k - 1. MaxID = 1023 }; } // end namespace CallingConv } // end namespace llvm #endif // LLVM_IR_CALLINGCONV_H