//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the /// allocator. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_ALLOCATOR_H #define LLVM_SUPPORT_ALLOCATOR_H #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/AllocatorBase.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include #include #include namespace llvm { namespace detail { // We call out to an external function to actually print the message as the // printing code uses Allocator.h in its implementation. void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, size_t TotalMemory); } // end namespace detail /// Allocate memory in an ever growing pool, as if by bump-pointer. /// /// This isn't strictly a bump-pointer allocator as it uses backing slabs of /// memory rather than relying on a boundless contiguous heap. However, it has /// bump-pointer semantics in that it is a monotonically growing pool of memory /// where every allocation is found by merely allocating the next N bytes in /// the slab, or the next N bytes in the next slab. /// /// Note that this also has a threshold for forcing allocations above a certain /// size into their own slab. /// /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator /// object, which wraps malloc, to allocate memory, but it can be changed to /// use a custom allocator. /// /// The GrowthDelay specifies after how many allocated slabs the allocator /// increases the size of the slabs. template class BumpPtrAllocatorImpl : public AllocatorBase>, private detail::AllocatorHolder { using AllocTy = detail::AllocatorHolder; public: static_assert(SizeThreshold <= SlabSize, "The SizeThreshold must be at most the SlabSize to ensure " "that objects larger than a slab go into their own memory " "allocation."); static_assert(GrowthDelay > 0, "GrowthDelay must be at least 1 which already increases the" "slab size after each allocated slab."); BumpPtrAllocatorImpl() = default; template BumpPtrAllocatorImpl(T &&Allocator) : AllocTy(std::forward(Allocator)) {} // Manually implement a move constructor as we must clear the old allocator's // slabs as a matter of correctness. BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)), CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { Old.CurPtr = Old.End = nullptr; Old.BytesAllocated = 0; Old.Slabs.clear(); Old.CustomSizedSlabs.clear(); } ~BumpPtrAllocatorImpl() { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs(); } BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs(); CurPtr = RHS.CurPtr; End = RHS.End; BytesAllocated = RHS.BytesAllocated; RedZoneSize = RHS.RedZoneSize; Slabs = std::move(RHS.Slabs); CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); AllocTy::operator=(std::move(RHS.getAllocator())); RHS.CurPtr = RHS.End = nullptr; RHS.BytesAllocated = 0; RHS.Slabs.clear(); RHS.CustomSizedSlabs.clear(); return *this; } /// Deallocate all but the current slab and reset the current pointer /// to the beginning of it, freeing all memory allocated so far. void Reset() { // Deallocate all but the first slab, and deallocate all custom-sized slabs. DeallocateCustomSizedSlabs(); CustomSizedSlabs.clear(); if (Slabs.empty()) return; // Reset the state. BytesAllocated = 0; CurPtr = (char *)Slabs.front(); End = CurPtr + SlabSize; __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); Slabs.erase(std::next(Slabs.begin()), Slabs.end()); } /// Allocate space at the specified alignment. // This method is *not* marked noalias, because // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and // that loop is not based on the Allocate() return value. // // Allocate(0, N) is valid, it returns a non-null pointer (which should not // be dereferenced). LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) { // Keep track of how many bytes we've allocated. BytesAllocated += Size; size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment); assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow"); size_t SizeToAllocate = Size; #if LLVM_ADDRESS_SANITIZER_BUILD // Add trailing bytes as a "red zone" under ASan. SizeToAllocate += RedZoneSize; #endif // Check if we have enough space. if (Adjustment + SizeToAllocate <= size_t(End - CurPtr) // We can't return nullptr even for a zero-sized allocation! && CurPtr != nullptr) { char *AlignedPtr = CurPtr + Adjustment; CurPtr = AlignedPtr + SizeToAllocate; // Update the allocation point of this memory block in MemorySanitizer. // Without this, MemorySanitizer messages for values originated from here // will point to the allocation of the entire slab. __msan_allocated_memory(AlignedPtr, Size); // Similarly, tell ASan about this space. __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; } // If Size is really big, allocate a separate slab for it. size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; if (PaddedSize > SizeThreshold) { void *NewSlab = this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t)); // We own the new slab and don't want anyone reading anyting other than // pieces returned from this method. So poison the whole slab. __asan_poison_memory_region(NewSlab, PaddedSize); CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); char *AlignedPtr = (char*)AlignedAddr; __msan_allocated_memory(AlignedPtr, Size); __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; } // Otherwise, start a new slab and try again. StartNewSlab(); uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End && "Unable to allocate memory!"); char *AlignedPtr = (char*)AlignedAddr; CurPtr = AlignedPtr + SizeToAllocate; __msan_allocated_memory(AlignedPtr, Size); __asan_unpoison_memory_region(AlignedPtr, Size); return AlignedPtr; } inline LLVM_ATTRIBUTE_RETURNS_NONNULL void * Allocate(size_t Size, size_t Alignment) { assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead."); return Allocate(Size, Align(Alignment)); } // Pull in base class overloads. using AllocatorBase::Allocate; // Bump pointer allocators are expected to never free their storage; and // clients expect pointers to remain valid for non-dereferencing uses even // after deallocation. void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { __asan_poison_memory_region(Ptr, Size); } // Pull in base class overloads. using AllocatorBase::Deallocate; size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } /// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. /// The returned value is negative iff the object is inside a custom-size /// slab. /// Returns an empty optional if the pointer is not found in the allocator. std::optional identifyObject(const void *Ptr) { const char *P = static_cast(Ptr); int64_t InSlabIdx = 0; for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { const char *S = static_cast(Slabs[Idx]); if (P >= S && P < S + computeSlabSize(Idx)) return InSlabIdx + static_cast(P - S); InSlabIdx += static_cast(computeSlabSize(Idx)); } // Use negative index to denote custom sized slabs. int64_t InCustomSizedSlabIdx = -1; for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { const char *S = static_cast(CustomSizedSlabs[Idx].first); size_t Size = CustomSizedSlabs[Idx].second; if (P >= S && P < S + Size) return InCustomSizedSlabIdx - static_cast(P - S); InCustomSizedSlabIdx -= static_cast(Size); } return std::nullopt; } /// A wrapper around identifyObject that additionally asserts that /// the object is indeed within the allocator. /// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. int64_t identifyKnownObject(const void *Ptr) { std::optional Out = identifyObject(Ptr); assert(Out && "Wrong allocator used"); return *Out; } /// A wrapper around identifyKnownObject. Accepts type information /// about the object and produces a smaller identifier by relying on /// the alignment information. Note that sub-classes may have different /// alignment, so the most base class should be passed as template parameter /// in order to obtain correct results. For that reason automatic template /// parameter deduction is disabled. /// \return An index uniquely and reproducibly identifying /// an input pointer \p Ptr in the given allocator. This identifier is /// different from the ones produced by identifyObject and /// identifyAlignedObject. template int64_t identifyKnownAlignedObject(const void *Ptr) { int64_t Out = identifyKnownObject(Ptr); assert(Out % alignof(T) == 0 && "Wrong alignment information"); return Out / alignof(T); } size_t getTotalMemory() const { size_t TotalMemory = 0; for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); for (const auto &PtrAndSize : CustomSizedSlabs) TotalMemory += PtrAndSize.second; return TotalMemory; } size_t getBytesAllocated() const { return BytesAllocated; } void setRedZoneSize(size_t NewSize) { RedZoneSize = NewSize; } void PrintStats() const { detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, getTotalMemory()); } private: /// The current pointer into the current slab. /// /// This points to the next free byte in the slab. char *CurPtr = nullptr; /// The end of the current slab. char *End = nullptr; /// The slabs allocated so far. SmallVector Slabs; /// Custom-sized slabs allocated for too-large allocation requests. SmallVector, 0> CustomSizedSlabs; /// How many bytes we've allocated. /// /// Used so that we can compute how much space was wasted. size_t BytesAllocated = 0; /// The number of bytes to put between allocations when running under /// a sanitizer. size_t RedZoneSize = 1; static size_t computeSlabSize(unsigned SlabIdx) { // Scale the actual allocated slab size based on the number of slabs // allocated. Every GrowthDelay slabs allocated, we double // the allocated size to reduce allocation frequency, but saturate at // multiplying the slab size by 2^30. return SlabSize * ((size_t)1 << std::min(30, SlabIdx / GrowthDelay)); } /// Allocate a new slab and move the bump pointers over into the new /// slab, modifying CurPtr and End. void StartNewSlab() { size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize, alignof(std::max_align_t)); // We own the new slab and don't want anyone reading anything other than // pieces returned from this method. So poison the whole slab. __asan_poison_memory_region(NewSlab, AllocatedSlabSize); Slabs.push_back(NewSlab); CurPtr = (char *)(NewSlab); End = ((char *)NewSlab) + AllocatedSlabSize; } /// Deallocate a sequence of slabs. void DeallocateSlabs(SmallVectorImpl::iterator I, SmallVectorImpl::iterator E) { for (; I != E; ++I) { size_t AllocatedSlabSize = computeSlabSize(std::distance(Slabs.begin(), I)); this->getAllocator().Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t)); } } /// Deallocate all memory for custom sized slabs. void DeallocateCustomSizedSlabs() { for (auto &PtrAndSize : CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t)); } } template friend class SpecificBumpPtrAllocator; }; /// The standard BumpPtrAllocator which just uses the default template /// parameters. typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; /// A BumpPtrAllocator that allows only elements of a specific type to be /// allocated. /// /// This allows calling the destructor in DestroyAll() and when the allocator is /// destroyed. template class SpecificBumpPtrAllocator { BumpPtrAllocator Allocator; public: SpecificBumpPtrAllocator() { // Because SpecificBumpPtrAllocator walks the memory to call destructors, // it can't have red zones between allocations. Allocator.setRedZoneSize(0); } SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) : Allocator(std::move(Old.Allocator)) {} ~SpecificBumpPtrAllocator() { DestroyAll(); } SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { Allocator = std::move(RHS.Allocator); return *this; } /// Call the destructor of each allocated object and deallocate all but the /// current slab and reset the current pointer to the beginning of it, freeing /// all memory allocated so far. void DestroyAll() { auto DestroyElements = [](char *Begin, char *End) { assert(Begin == (char *)alignAddr(Begin, Align::Of())); for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) reinterpret_cast(Ptr)->~T(); }; for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; ++I) { size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( std::distance(Allocator.Slabs.begin(), I)); char *Begin = (char *)alignAddr(*I, Align::Of()); char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr : (char *)*I + AllocatedSlabSize; DestroyElements(Begin, End); } for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; DestroyElements((char *)alignAddr(Ptr, Align::Of()), (char *)Ptr + Size); } Allocator.Reset(); } /// Allocate space for an array of objects without constructing them. T *Allocate(size_t num = 1) { return Allocator.Allocate(num); } }; } // end namespace llvm template void * operator new(size_t Size, llvm::BumpPtrAllocatorImpl &Allocator) { return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size), alignof(std::max_align_t))); } template void operator delete(void *, llvm::BumpPtrAllocatorImpl &) { } #endif // LLVM_SUPPORT_ALLOCATOR_H