{-# LANGUAGE FlexibleContexts #-} module LLVM.IRBuilder.Instruction where import Prelude hiding (and, or, pred) import Data.Word import LLVM.AST hiding (args, dests) import LLVM.AST.Type as AST import LLVM.AST.Typed import LLVM.AST.ParameterAttribute import qualified LLVM.AST as AST import qualified LLVM.AST.CallingConvention as CC import qualified LLVM.AST.Constant as C import qualified LLVM.AST.IntegerPredicate as IP import qualified LLVM.AST.FloatingPointPredicate as FP import LLVM.IRBuilder.Monad fadd :: MonadIRBuilder m => Operand -> Operand -> m Operand fadd a b = emitInstr (typeOf a) $ FAdd NoFastMathFlags a b [] fmul :: MonadIRBuilder m => Operand -> Operand -> m Operand fmul a b = emitInstr (typeOf a) $ FMul NoFastMathFlags a b [] fsub :: MonadIRBuilder m => Operand -> Operand -> m Operand fsub a b = emitInstr (typeOf a) $ FSub NoFastMathFlags a b [] fdiv :: MonadIRBuilder m => Operand -> Operand -> m Operand fdiv a b = emitInstr (typeOf a) $ FDiv NoFastMathFlags a b [] frem :: MonadIRBuilder m => Operand -> Operand -> m Operand frem a b = emitInstr (typeOf a) $ FRem NoFastMathFlags a b [] add :: MonadIRBuilder m => Operand -> Operand -> m Operand add a b = emitInstr (typeOf a) $ Add False False a b [] mul :: MonadIRBuilder m => Operand -> Operand -> m Operand mul a b = emitInstr (typeOf a) $ Mul False False a b [] sub :: MonadIRBuilder m => Operand -> Operand -> m Operand sub a b = emitInstr (typeOf a) $ Sub False False a b [] udiv :: MonadIRBuilder m => Operand -> Operand -> m Operand udiv a b = emitInstr (typeOf a) $ UDiv False a b [] sdiv :: MonadIRBuilder m => Operand -> Operand -> m Operand sdiv a b = emitInstr (typeOf a) $ SDiv False a b [] urem :: MonadIRBuilder m => Operand -> Operand -> m Operand urem a b = emitInstr (typeOf a) $ URem a b [] shl :: MonadIRBuilder m => Operand -> Operand -> m Operand shl a b = emitInstr (typeOf a) $ Shl False False a b [] lshr :: MonadIRBuilder m => Operand -> Operand -> m Operand lshr a b = emitInstr (typeOf a) $ LShr True a b [] ashr :: MonadIRBuilder m => Operand -> Operand -> m Operand ashr a b = emitInstr (typeOf a) $ AShr True a b [] and :: MonadIRBuilder m => Operand -> Operand -> m Operand and a b = emitInstr (typeOf a) $ And a b [] or :: MonadIRBuilder m => Operand -> Operand -> m Operand or a b = emitInstr (typeOf a) $ Or a b [] xor :: MonadIRBuilder m => Operand -> Operand -> m Operand xor a b = emitInstr (typeOf a) $ Xor a b [] alloca :: MonadIRBuilder m => Type -> Maybe Operand -> Word32 -> m Operand alloca ty count align = emitInstr (ptr ty) $ Alloca ty count align [] load :: MonadIRBuilder m => Operand -> Word32 -> m Operand load a align = emitInstr retty $ Load False a Nothing align [] where retty = case typeOf a of PointerType ty _ -> ty _ -> error "Cannot load non-pointer (Malformed AST)." store :: MonadIRBuilder m => Operand -> Word32 -> Operand -> m () store addr align val = emitInstrVoid $ Store False addr val Nothing align [] gep :: MonadIRBuilder m => Operand -> [Operand] -> m Operand gep addr is = emitInstr (gepType (typeOf addr) is) (GetElementPtr False addr is []) where -- TODO: Perhaps use the function from llvm-hs-pretty (https://github.com/llvm-hs/llvm-hs-pretty/blob/master/src/LLVM/Typed.hs) gepType :: Type -> [Operand] -> Type gepType ty [] = ptr ty gepType (PointerType ty _) (_:is') = gepType ty is' gepType (StructureType _ elTys) (ConstantOperand (C.Int 32 val):is') = gepType (elTys !! fromIntegral val) is' gepType (StructureType _ _) (i:_) = error $ "gep: Indices into structures should be 32-bit constants. " ++ show i gepType (VectorType _ elTy) (_:is') = gepType elTy is' gepType (ArrayType _ elTy) (_:is') = gepType elTy is' gepType t (_:_) = error $ "gep: Can't index into a " ++ show t trunc :: MonadIRBuilder m => Operand -> Type -> m Operand trunc a to = emitInstr to $ Trunc a to [] fptrunc :: MonadIRBuilder m => Operand -> Type -> m Operand fptrunc a to = emitInstr to $ FPTrunc a to [] zext :: MonadIRBuilder m => Operand -> Type -> m Operand zext a to = emitInstr to $ ZExt a to [] sext :: MonadIRBuilder m => Operand -> Type -> m Operand sext a to = emitInstr to $ SExt a to [] fptoui :: MonadIRBuilder m => Operand -> Type -> m Operand fptoui a to = emitInstr to $ FPToUI a to [] fptosi :: MonadIRBuilder m => Operand -> Type -> m Operand fptosi a to = emitInstr to $ FPToSI a to [] fpext :: MonadIRBuilder m => Operand -> Type -> m Operand fpext a to = emitInstr to $ FPExt a to [] uitofp :: MonadIRBuilder m => Operand -> Type -> m Operand uitofp a to = emitInstr to $ UIToFP a to [] sitofp :: MonadIRBuilder m => Operand -> Type -> m Operand sitofp a to = emitInstr to $ SIToFP a to [] ptrtoint :: MonadIRBuilder m => Operand -> Type -> m Operand ptrtoint a to = emitInstr to $ PtrToInt a to [] inttoptr :: MonadIRBuilder m => Operand -> Type -> m Operand inttoptr a to = emitInstr to $ IntToPtr a to [] bitcast :: MonadIRBuilder m => Operand -> Type -> m Operand bitcast a to = emitInstr to $ BitCast a to [] extractElement :: MonadIRBuilder m => Operand -> Operand -> m Operand extractElement v i = emitInstr (typeOf v) $ ExtractElement v i [] insertElement :: MonadIRBuilder m => Operand -> Operand -> Operand -> m Operand insertElement v e i = emitInstr (typeOf v) $ InsertElement v e i [] shuffleVector :: MonadIRBuilder m => Operand -> Operand -> C.Constant -> m Operand shuffleVector a b m = emitInstr (typeOf a) $ ShuffleVector a b m [] extractValue :: MonadIRBuilder m => Operand -> [Word32] -> m Operand extractValue a i = emitInstr (typeOf a) $ ExtractValue a i [] insertValue :: MonadIRBuilder m => Operand -> Operand -> [Word32] -> m Operand insertValue a e i = emitInstr (typeOf a) $ InsertValue a e i [] icmp :: MonadIRBuilder m => IP.IntegerPredicate -> Operand -> Operand -> m Operand icmp pred a b = emitInstr i1 $ ICmp pred a b [] fcmp :: MonadIRBuilder m => FP.FloatingPointPredicate -> Operand -> Operand -> m Operand fcmp pred a b = emitInstr i1 $ FCmp pred a b [] -- | Unconditional branch br :: MonadIRBuilder m => Name -> m () br val = emitTerm (Br val []) phi :: MonadIRBuilder m => [(Operand, Name)] -> m Operand phi [] = emitInstr AST.void $ Phi AST.void [] [] phi incoming@(i:_) = emitInstr ty $ Phi ty incoming [] where ty = typeOf (fst i) -- result type retVoid :: MonadIRBuilder m => m () retVoid = emitTerm (Ret Nothing []) call :: MonadIRBuilder m => Operand -> [(Operand, [ParameterAttribute])] -> m Operand call fun args = do let instr = Call { AST.tailCallKind = Nothing , AST.callingConvention = CC.C , AST.returnAttributes = [] , AST.function = Right fun , AST.arguments = args , AST.functionAttributes = [] , AST.metadata = [] } case typeOf fun of FunctionType r _ _ -> case r of VoidType -> emitInstrVoid instr >> (pure (ConstantOperand (C.Undef void))) _ -> emitInstr r instr PointerType (FunctionType r _ _) _ -> case r of VoidType -> emitInstrVoid instr >> (pure (ConstantOperand (C.Undef void))) _ -> emitInstr r instr _ -> error "Cannot call non-function (Malformed AST)." ret :: MonadIRBuilder m => Operand -> m () ret val = emitTerm (Ret (Just val) []) switch :: MonadIRBuilder m => Operand -> Name -> [(C.Constant, Name)] -> m () switch val def dests = emitTerm $ Switch val def dests [] select :: MonadIRBuilder m => Operand -> Operand -> Operand -> m Operand select cond t f = emitInstr (typeOf t) $ Select cond t f [] condBr :: MonadIRBuilder m => Operand -> Name -> Name -> m () condBr cond tdest fdest = emitTerm $ CondBr cond tdest fdest [] unreachable :: MonadIRBuilder m => m () unreachable = emitTerm $ Unreachable []