úÎ Ô Ñ non-portable experimentalEdward Kmett <ekmett@gmail.com>NoneLog-domain Float and Double values. This provides log1p and expm11 for working more accurately with small numbers.  Computes  log(1 + x) =This is far enough from 0 that the Taylor series is defined. )The Taylor series for exp(x) is given by   exp(x) = 1 + x + x^2/2! + ... When xB is small, the leading 1 consumes all of the available precision. This computes:   exp(x) - 1 = x + x^2/2! + .. Twhich can afford you a great deal of additional precision if you move things around 0 algebraically to provide the 1 by other means. Negative infinity '  !"#$%&#  !"#$%&'      !"#$%&'(log-domain-0.1 Numeric.LogLogrunLogPreciselog1pexpm1negInf $fMonadLog $fBindLog $fApplyLog$fComonadApplyLog$fApplicativeLog $fComonadLog $fExtendLog$fDistributiveLog$fTraversable1Log$fTraversableLog$fFoldable1Log $fFoldableLog $fNFDataLog $fStorableLog $fHashableLog $fFunctorLog $fBinaryLog $fReadLog $fShowLogc_log1pfc_expm1fc_expm1c_log1plogMap$fPreciseComplex$fPreciseFloat$fPreciseDouble $fFloatingLog $fRealLog$fFractionalLog$fNumLog $fSafeCopyLog