{-# LANGUAGE FlexibleContexts, FlexibleInstances, RebindableSyntax, ScopedTypeVariables, TypeFamilies #-} -- | Classes and helper methods for the Chinese remainder transform -- and ring extensions. module Crypto.Lol.CRTrans ( CRTrans(..), CRTEmbed(..) , CRTInfo , crtInfoFact, crtInfoPPow, crtInfoPrime , gEmbPPow, gEmbPrime ) where import Crypto.Lol.LatticePrelude import Control.Arrow import Data.Singletons import Data.Singletons.Prelude -- | Information that characterizes the (invertible) Chinese remainder -- transformation over a ring @r@, namely: -- -- (1) a function that returns the @i@th power of some /principal/ -- @m@th root of unity (for any integer @i@) -- -- (2) the multiplicative inverse of @\\hat{m}@ in @r@. type CRTInfo r = (Int -> r, r) -- | A ring that (possibly) supports invertible Chinese remainder -- transformations of various indices. -- | The values of 'crtInfo' for different indices @m@ should be -- consistent, in the sense that if @omega@, @omega'@ are respectively -- the values returned for @m@, @m'@ where @m'@ divides @m@, then it -- should be the case that @omega^(m/m')=omega'@. class Ring r => CRTrans r where -- | 'CRTInfo' for a given index @m@. The method itself may be -- slow, but the function it returns should be fast, e.g., via -- internal memoization. The default implementation returns -- 'Nothing'. crtInfo :: Int -> Maybe (CRTInfo r) crtInfo = const Nothing -- | A ring with a ring embedding into some ring @CRTExt r@ that has -- an invertible CRT transformation for /every/ positive index @m@. class (Ring r, Ring (CRTExt r)) => CRTEmbed r where type CRTExt r -- | Embeds from @r@ to @CRTExt r@ toExt :: r -> CRTExt r -- | Projects from @CRTExt r@ to @r@ fromExt :: CRTExt r -> r -- CRTrans instance for product rings instance (CRTrans a, CRTrans b) => CRTrans (a,b) where crtInfo i = do (apow, aiInv) <- crtInfo i (bpow, biInv) <- crtInfo i return (apow &&& bpow, (aiInv, biInv)) -- CRTEmbed instance for product rings instance (CRTEmbed a, CRTEmbed b) => CRTEmbed (a,b) where type CRTExt (a,b) = (CRTExt a, CRTExt b) toExt = toExt *** toExt fromExt = fromExt *** fromExt omegaPowC :: (Transcendental a) => Int -> Int -> Complex a omegaPowC m i = cis (2*pi*fromIntegral i / fromIntegral m) -- | 'crtInfo' wrapper for 'Fact' types. crtInfoFact :: (Fact m, CRTrans r) => TaggedT m Maybe (CRTInfo r) crtInfoFact = (tagT . crtInfo) =<< pureT valueFact -- | 'crtInfo' wrapper for 'PPow' types. crtInfoPPow :: (PPow pp, CRTrans r) => TaggedT pp Maybe (CRTInfo r) crtInfoPPow = (tagT . crtInfo) =<< pureT valuePPow -- | 'crtInfo' wrapper for 'Prime' types. crtInfoPrime :: (Prim p, CRTrans r) => TaggedT p Maybe (CRTInfo r) crtInfoPrime = (tagT . crtInfo) =<< pureT valuePrime -- | A function that returns the 'i'th embedding of @g_{p^e} = g_p@ for -- @i@ in @Z*_{p^e}@. gEmbPPow :: forall pp r . (PPow pp, CRTrans r) => TaggedT pp Maybe (Int -> r) gEmbPPow = tagT $ case (sing :: SPrimePower pp) of (SPP (STuple2 sp _)) -> withWitnessT gEmbPrime sp -- | A function that returns the @i@th embedding of @g_p@ for @i@ in @Z*_p@, -- i.e., @1-omega_p^i@. gEmbPrime :: (Prim p, CRTrans r) => TaggedT p Maybe (Int -> r) gEmbPrime = do (f, _) <- crtInfoPrime return $ \i -> one - f i -- not checking that i /= 0 (mod p) -- the complex numbers have roots of unity of any order instance (Transcendental a) => CRTrans (Complex a) where crtInfo m = Just (omegaPowC m, recip $ fromIntegral $ valueHat m) -- trivial CRTEmbed instance for complex numbers instance (Transcendental a) => CRTEmbed (Complex a) where type CRTExt (Complex a) = Complex a toExt = id fromExt = id -- Default CRTrans instances for real and integer types, which do -- not have roots of unity (except in trivial cases). These are needed -- to use FastCyc with these integer types. instance CRTrans Double instance CRTrans Int instance CRTrans Int64 instance CRTrans Integer -- can also do for Int8, Int16, Int32 etc. -- CRTEmbed instances for real and integer types, embedding into -- Complex. These are needed to use FastCyc with these integer types. instance CRTEmbed Double where type CRTExt Double = Complex Double toExt = fromReal . realToField fromExt = realToField . real instance CRTEmbed Int where type CRTExt Int = Complex Double toExt = fromIntegral fromExt = fst . roundComplex instance CRTEmbed Int64 where type CRTExt Int64 = Complex Double toExt = fromIntegral fromExt = fst . roundComplex instance CRTEmbed Integer where -- CJP: sufficient precision? Not in general. type CRTExt Integer = Complex Double toExt = fromIntegral fromExt = fst . roundComplex