{-# LANGUAGE ConstraintKinds, DataKinds, FlexibleContexts, FlexibleInstances, FunctionalDependencies, GeneralizedNewtypeDeriving, MultiParamTypeClasses, NoImplicitPrelude, PolyKinds, RankNTypes, RebindableSyntax, ScopedTypeVariables, StandaloneDeriving, TemplateHaskell, TypeFamilies, TypeOperators, UndecidableInstances #-} -- | A substitute for the Prelude that is more suitable for Lol. This -- module exports most of the Numeric Prelude and other frequently -- used modules, plus some low-level classes, missing instances, and -- assorted utility functions. module Crypto.Lol.LatticePrelude ( -- * Classes and families Enumerable(..) , Mod(..) , Reduce(..), LiftOf, Lift, Lift'(..), Rescale(..), Encode(..), msdToLSD , CharOf -- * Numeric , module Crypto.Lol.Types.Numeric -- * Complex , module Crypto.Lol.Types.Complex -- * Factored , module Crypto.Lol.Factored -- * Miscellaneous , rescaleMod, roundCoset , fromJust', pureT, peelT, pasteT, withWitness, withWitnessT , module Data.Functor.Trans.Tagged , module Data.Proxy ) where import Crypto.Lol.Factored import Crypto.Lol.Types.Complex import Crypto.Lol.Types.Numeric import Algebra.Field as Field (C) import Algebra.IntegralDomain as IntegralDomain (C) import Algebra.Ring as Ring (C) import Control.Applicative import Control.Arrow import Control.DeepSeq import Control.Monad.Identity import Control.Monad.Random import Data.Coerce import Data.Default import Data.Functor.Trans.Tagged import Data.Maybe import Data.Proxy import Data.Singletons -- for Unbox instance of Maybe a import qualified Data.Vector.Unboxed as U import Data.Vector.Unboxed.Deriving instance NFData (Proxy (a :: k)) where rnf Proxy = () deriving instance NFData (m a) => NFData (TaggedT s m a) deriving instance (MonadRandom m) => MonadRandom (TaggedT (tag :: k) m) derivingUnbox "Maybe" [t| forall a . (Default a, U.Unbox a) => Maybe a -> (Bool, a) |] [| maybe (False, def) (\ x -> (True, x)) |] [| \ (b, x) -> if b then Just x else Nothing |] instance Default Bool where def = False -- | The characteristic of a ring, represented as a type. type family CharOf fp :: k -- | Poor man's 'Enum'. class Enumerable a where values :: [a] -- | Represents a quotient group modulo some integer. class (ToInteger (ModRep a), Additive a) => Mod a where type ModRep a modulus :: Tagged a (ModRep a) -- | Represents that @b@ is a quotient group of @a@. class (Additive a, Additive b) => Reduce a b where reduce :: a -> b -- | Represents that @b@ can be lifted to a "short" @a@ congruent to @b@. type Lift b a = (Lift' b, LiftOf b ~ a) -- | The type of representatives of @b@. type family LiftOf b -- | Fun-dep version of Lift. class (Reduce (LiftOf b) b) => Lift' b where lift :: b -> LiftOf b -- | Represents that @a@ can be rescaled to @b@, as an "approximate" -- additive homomorphism. class (Additive a, Additive b) => Rescale a b where rescale :: a -> b -- | Represents that the target ring can "noisily encode" values from -- the source ring, in either "most significant digit" (MSD) or "least -- significant digit" (LSD) encodings, and provides conversion factors -- between the two types of encodings. class (Field src, Field tgt) => Encode src tgt where -- | The factor that converts an element from LSD to MSD encoding -- in the target field, with associated scale factor to apply to -- correct the resulting encoded value. lsdToMSD :: (src, tgt) -- | Inverted entries of 'lsdToMSD'. msdToLSD :: (Encode src tgt) => (src, tgt) msdToLSD = (recip *** recip) lsdToMSD {-# INLINABLE msdToLSD #-} -- | A default implementation of rescaling for 'Mod' types. rescaleMod :: forall a b . (Mod a, Mod b, (ModRep a) ~ (ModRep b), Lift a (ModRep b), Ring b) => a -> b {-# INLINABLE rescaleMod #-} rescaleMod = let qval = proxy modulus (Proxy :: Proxy a) q'val = proxy modulus (Proxy :: Proxy b) in \x -> let (quot',_) = divModCent (q'val * lift x) qval in fromIntegral quot' -- | Deterministically round to a nearby value in the desired coset roundCoset :: forall zp z r . (Mod zp, z ~ ModRep zp, Lift zp z, RealField r) => zp -> r -> z {-# INLINABLE roundCoset #-} roundCoset = let pval = proxy modulus (Proxy::Proxy zp) in \ zp x -> let rep = lift zp in rep + roundMult pval (x - fromIntegral rep) ---------- Instances for product groups/rings ---------- type instance LiftOf (a,b) = Integer instance (Mod a, Mod b, Lift' a, Lift' b, Reduce Integer (a,b), ToInteger (LiftOf a), ToInteger (LiftOf b)) => Lift' (a,b) where {-# INLINABLE lift #-} lift (a,b) = let moda = toInteger $ proxy modulus (Proxy::Proxy a) modb = toInteger $ proxy modulus (Proxy::Proxy b) q = moda * modb ainv = fromMaybe (error "Lift' (a,b): moduli not coprime") $ moda `modinv` modb lifta = toInteger $ lift a liftb = toInteger $ lift b -- put in [-q/2, q/2) (_,r) = (moda * (liftb - lifta) * ainv + lifta) `divModCent` q in r -- NP should define Ring and Field instances for pairs, but doesn't. -- So we do it here. instance (Ring r1, Ring r2) => Ring.C (r1, r2) where (x1, x2) * (y1, y2) = (x1*y1, x2*y2) one = (one,one) fromInteger x = (fromInteger x, fromInteger x) {-# INLINABLE (*) #-} {-# INLINABLE one #-} {-# INLINABLE fromInteger #-} instance (Field f1, Field f2) => Field.C (f1, f2) where (x1, x2) / (y1, y2) = (x1 / y1, x2 / y2) recip = recip *** recip {-# INLINABLE (/) #-} {-# INLINABLE recip #-} instance (IntegralDomain a, IntegralDomain b) => IntegralDomain.C (a,b) where (a1,b1) `divMod` (a2,b2) = let (da,ra) = (a1 `divMod` a2) (db,rb) = (b1 `divMod` b2) in ((da,db), (ra,rb)) {-# INLINABLE divMod #-} instance (Mod a, Mod b) => Mod (a,b) where type ModRep (a,b) = Integer modulus = tag $ fromIntegral (proxy modulus (Proxy::Proxy a)) * fromIntegral (proxy modulus (Proxy::Proxy b)) {-# INLINABLE modulus #-} instance (Reduce a b1, Reduce a b2) => Reduce a (b1, b2) where reduce x = (reduce x, reduce x) {-# INLINABLE reduce #-} -- instances of Rescale for a product instance (Mod a, Field b, Lift a (ModRep a), Reduce (LiftOf a) b) => Rescale (a,b) b where rescale = let q1val = proxy modulus (Proxy::Proxy a) q1inv = recip $ reduce q1val in \(x1,x2) -> q1inv * (x2 - reduce (lift x1)) {-# INLINABLE rescale #-} instance (Mod b, Field a, Lift b (ModRep b), Reduce (LiftOf b) a) => Rescale (a,b) a where rescale = let q2val = proxy modulus (Proxy::Proxy b) q2inv = recip $ reduce q2val in \(x1,x2) -> q2inv * (x1 - reduce (lift x2)) {-# INLINABLE rescale #-} -- some multi-step scaledowns; could do this forever instance (Rescale (a,(b,c)) (b,c), Rescale (b,c) c) => Rescale (a,(b,c)) c where rescale = (rescale :: (b,c) -> c) . rescale {-# INLINABLE rescale #-} instance (Rescale ((a,b),c) (a,b), Rescale (a,b) a) => Rescale ((a,b),c) a where rescale = (rescale :: (a,b) -> a) . rescale {-# INLINABLE rescale #-} -- scaling up to a product instance (Ring a, Mod b, Reduce (ModRep b) a) => Rescale a (a,b) where -- multiply by q2 rescale = let q2val = reduce $ proxy modulus (Proxy::Proxy b) in \x -> (q2val * x, zero) {-# INLINABLE rescale #-} instance (Ring b, Mod a, Reduce (ModRep a) b) => Rescale b (a,b) where -- multiply by q1 rescale = let q1val = reduce $ proxy modulus (Proxy::Proxy a) in \x -> (zero, q1val * x) {-# INLINABLE rescale #-} -- Instance of 'Encode' for product ring. instance (Encode s t1, Encode s t2, Field (t1, t2)) => Encode s (t1, t2) where {-# INLINABLE lsdToMSD #-} lsdToMSD = let (s1, t1conv) = lsdToMSD (s2, t2conv) = lsdToMSD in (negate s1 * s2, (t1conv,t2conv)) -- Random could have defined this instance, but didn't, so we do it -- here. instance (Random a, Random b) => Random (a,b) where {-# INLINABLE random #-} random g = let (a,g') = random g (b, g'') = random g' in ((a,b), g'') {-# INLINABLE randomR #-} randomR ((loa,lob), (hia,hib)) g = let (a,g') = randomR (loa,hia) g (b,g'') = randomR (lob,hib) g' in ((a,b),g'') -- | Version of 'fromJust' with an error message. fromJust' :: String -> Maybe a -> a fromJust' str = fromMaybe (error str) -- | Apply any applicative to a Tagged value. pureT :: Applicative f => TaggedT t Identity a -> TaggedT t f a pureT = mapTaggedT (pure . runIdentity) -- | Expose the monad of a tagged value. peelT :: Tagged t (f a) -> TaggedT t f a peelT = coerce -- | Hide the monad of a tagged value. pasteT :: TaggedT t f a -> Tagged t (f a) pasteT = coerce -- | Use a singleton as a witness to extract a value from a tagged value. withWitness :: forall n r . (SingI n => Tagged n r) -> Sing n -> r withWitness t wit = withSingI wit $ proxy t (Proxy::Proxy n) {-# INLINABLE withWitness #-} -- | Transformer version of 'withWitness'. withWitnessT :: forall n mon r . (SingI n => TaggedT n mon r) -> Sing n -> mon r withWitnessT t wit = withSingI wit $ proxyT t (Proxy::Proxy n) {-# INLINABLE withWitnessT #-}