-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Compute Maximum Entropy Distributions -- -- Use this package to compute maximum entropy distributions given a list -- of values and list of constraints. -- -- Here is a the example from Probability the Logic of Science -- --
-- maxent ([1,2,3], [average 1.5]) ---- -- Right [0.61, 0.26, 0.11] -- -- The classic dice example -- --
-- maxent ([1,2,3,4,5,6], [average 4.5]) ---- -- Right [.05, .07, 0.11, 0.16, 0.23, 0.34] @package maxent @version 0.2.0.0 -- | The maximum entropy method, or MAXENT, is variational approach for -- computing probability distributions given a list of moment, or -- expected value, constraints. -- -- Here are a link for background info. On the idea of maximum entropy in -- general: -- http://en.wikipedia.org/wiki/Principle_of_maximum_entropy -- -- Use this package to compute discrete maximum entropy distributions -- over a list of values and list of constraints. -- -- Here is a the example from Probability the Logic of Science -- --
-- maxent ([1,2,3], [average 1.5]) ---- -- Right [0.61, 0.26, 0.11] -- -- The classic dice example -- --
-- maxent ([1,2,3,4,5,6], [average 4.5]) ---- -- Right [.05, .07, 0.11, 0.16, 0.23, 0.34] -- -- One can use different constraints besides the average value there. -- -- As for why you want to maximize the entropy to find the probability -- constraint, I will say this for now. In the case of the average -- constraint it is a kin to choosing a integer partition with the most -- interger compositions. I doubt that makes any sense, but I will try to -- explain more with a blog post soon. module MaxEnt -- | Constraint type. A function and the constant it equals. -- -- Think of it as the pair (f, c) in the constraint -- --
-- Σ pₐ f(a, xₐ) = c ---- -- such that we are summing over all values and a is the index. -- -- For example, for a variance constraint the f would be (\_ -- x -> x*x) and c would be the variance. type Constraint a = (ExpectationFunction a, a) -- | A function that takes an index and value and returns a value. See -- average and variance for examples. type ExpectationFunction a = Int -> a -> a constraint :: Floating a => ExpectationFunction a -> a -> Constraint a average :: Floating a => a -> Constraint a variance :: Floating a => a -> Constraint a -- | The main entry point for computing discrete maximum entropy -- distributions. maxent :: (forall a. Floating a => ([a], [Constraint a])) -> Either (Result, Statistics) [Double]