module Numeric.MaxEnt.Linear where
import Numeric.MaxEnt.ConjugateGradient
import Numeric.Optimization.Algorithms.HagerZhang05
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Storable as S
import Numeric.AD
import GHC.IO (unsafePerformIO)
import Data.Traversable
import Numeric.AD.Types
import Numeric.AD.Internal.Classes
import Data.List (transpose)
import Control.Applicative
import qualified Data.Vector.Storable as S
probs matrix ls = map (pOfK matrix ls) [0..length matrix 1]
pOfK matrix ls k = exp (dot (transpose matrix !! k) ls) / partitionFunc matrix ls
partitionFunc matrix ws = sum $ [ exp (dot as ws) | as <- transpose matrix]
objectiveFunc as moments ls = log (partitionFunc as ls) dot ls moments
data LinearConstraints a = LC {
matrix :: [[a]],
output :: [a]
}
deriving (Show, Eq)
linear :: Double
-> LinearConstraints Double
-> Either (Result, Statistics) (S.Vector Double)
linear tolerance constraints = result where
obj = objectiveFunc (map (map auto) $ matrix constraints) (map auto $ output constraints)
as = matrix constraints
result = (S.fromList . probs as . S.toList) <$> minimize tolerance count obj
count = length $ output constraints
guess = U.fromList $ replicate
count ((1.0 :: Double) / (fromIntegral count))