{- - Origin: - Constraint Programming in Haskell - http://overtond.blogspot.com/2008/07/pre.html - author: David Overton, Melbourne Australia - - Modifications: - Monadic Constraint Programming - http://www.cs.kuleuven.be/~toms/Haskell/ - Tom Schrijvers -} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE OverlappingInstances #-} {-# LANGUAGE IncoherentInstances #-} {-# LANGUAGE UndecidableInstances #-} module Control.CP.FD.Domain ( Domain, ToDomain, toDomain, member, isSubsetOf, elems, intersection, difference, union, empty, null, singleton, isSingleton, filterLessThan, filterGreaterThan, findMax, findMin, size, shiftDomain ) where import qualified Data.IntSet as IntSet import Data.IntSet (IntSet) import Prelude hiding (null) data Domain = Set IntSet | Range Int Int deriving Show size :: Domain -> Int size (Range l u) = u - l + 1 size (Set set) = IntSet.size set -- Domain constructors class ToDomain a where toDomain :: a -> Domain instance ToDomain Domain where toDomain = id instance ToDomain IntSet where toDomain = Set instance Integral a => ToDomain [a] where toDomain = toDomain . IntSet.fromList . map fromIntegral instance (Integral a, Integral b) => ToDomain (a, b) where toDomain (a, b) = Range (fromIntegral a) (fromIntegral b) instance ToDomain () where toDomain () = Range minBound maxBound instance Integral a => ToDomain a where toDomain a = toDomain (a, a) -- Operations on Domains instance Eq Domain where (Range xl xh) == (Range yl yh) = xl == yl && xh == yh xs == ys = elems xs == elems ys member :: Int -> Domain -> Bool member n (Set xs) = n `IntSet.member` xs member n (Range xl xh) = n >= xl && n <= xh isSubsetOf :: Domain -> Domain -> Bool isSubsetOf (Set xs) (Set ys) = xs `IntSet.isSubsetOf` ys isSubsetOf (Range xl xh) (Range yl yh) = xl >= yl && xh <= yh isSubsetOf (Set xs) yd@(Range yl yh) = isSubsetOf (Range xl xh) yd where xl = IntSet.findMin xs xh = IntSet.findMax xs isSubsetOf (Range xl xh) (Set ys) = all (`IntSet.member` ys) [xl..xh] elems :: Domain -> [Int] elems (Set xs) = IntSet.elems xs elems (Range xl xh) = [xl..xh] intersection :: Domain -> Domain -> Domain intersection (Set xs) (Set ys) = Set (xs `IntSet.intersection` ys) intersection (Range xl xh) (Range yl yh) = Range (max xl yl) (min xh yh) intersection (Set xs) (Range yl yh) = Set $ IntSet.filter (\x -> x >= yl && x <= yh) xs intersection x y = intersection y x union :: Domain -> Domain -> Domain union (Set xs) (Set ys) = Set (xs `IntSet.union` ys) union (Range xl xh) (Range yl yh) | xh + 1 >= yl || yh+1 >= xl = Range (min xl yl) (max xh yh) | otherwise = union (Set $ IntSet.fromList [xl..xh]) (Set $ IntSet.fromList [yl..yh]) union x@(Set xs) y@(Range yl yh) = if null x then y else let xmin = IntSet.findMin xs xmax = IntSet.findMax xs in if (xmin + 1 >= yl && xmax - 1 <= yh) then Range (min xmin yl) (max xmax yh) else union (Set xs) (Set $ IntSet.fromList [yl..yh]) union x y = union y x difference :: Domain -> Domain -> Domain difference (Set xs) (Set ys) = Set (xs `IntSet.difference` ys) difference xd@(Range xl xh) (Range yl yh) | yl > xh || yh < xl = xd | otherwise = Set $ IntSet.fromList [x | x <- [xl..xh], x < yl || x > yh] difference (Set xs) (Range yl yh) = Set $ IntSet.filter (\x -> x < yl || x > yh) xs difference (Range xl xh) (Set ys) | IntSet.findMin ys > xh || IntSet.findMax ys < xl = Range xl xh | otherwise = Set $ IntSet.fromList [x | x <- [xl..xh], not (x `IntSet.member` ys)] null :: Domain -> Bool null (Set xs) = IntSet.null xs null (Range xl xh) = xl > xh singleton :: Int -> Domain singleton x = Set (IntSet.singleton x) isSingleton :: Domain -> Bool isSingleton (Set xs) = case IntSet.elems xs of [x] -> True _ -> False isSingleton (Range xl xh) = xl == xh filterLessThan :: Int -> Domain -> Domain filterLessThan n (Set xs) = Set $ IntSet.filter (< n) xs filterLessThan n (Range xl xh) = Range xl (min (n-1) xh) filterGreaterThan :: Int -> Domain -> Domain filterGreaterThan n (Set xs) = Set $ IntSet.filter (> n) xs filterGreaterThan n (Range xl xh) = Range (max (n+1) xl) xh findMax :: Domain -> Int findMax (Set xs) = IntSet.findMax xs findMax (Range xl xh) = xh findMin :: Domain -> Int findMin (Set xs) = IntSet.findMin xs findMin (Range xl xh) = xl empty :: Domain empty = Range 1 0 shiftDomain :: Domain -> Int -> Domain shiftDomain (Range l u) d = Range (l + d) (u + d) shiftDomain (Set xs) d = Set $ IntSet.fromList $ map (+d) (IntSet.elems xs)