{- Copyright 2014-2015 Mario Blazevic License: BSD3 (see BSD3-LICENSE.txt file) -} -- | This module defines two monoid transformer data types, 'OffsetPositioned' and 'LinePositioned'. Both data types add -- a notion of the current position to their base monoid. In case of 'OffsetPositioned', the current position is a -- simple integer offset from the beginning of the monoid, and it can be applied to any 'StableFactorialMonoid'. The -- base monoid of 'LinePositioned' must be a 'TextualMonoid', but for the price it will keep track of the current line -- and column numbers as well. -- -- All positions are zero-based: -- -- >> let p = pure "abcd\nefgh\nijkl\nmnop\n" :: LinePositioned String -- >> p -- >Line 0, column 0: "abcd\nefgh\nijkl\nmnop\n" -- >> Data.Monoid.Factorial.drop 13 p -- >Line 2, column 3: "l\nmnop\n" {-# LANGUAGE Haskell2010 #-} module Data.Monoid.Instances.Positioned ( OffsetPositioned, LinePositioned, extract, position, line, column ) where import Control.Applicative -- (Applicative(..)) import qualified Data.List as List import Data.String (IsString(..)) import Data.Monoid -- (Monoid(..), (<>), Endo(..)) import Data.Monoid.Cancellative (LeftReductiveMonoid(..), RightReductiveMonoid(..), LeftGCDMonoid(..), RightGCDMonoid(..)) import Data.Monoid.Null (MonoidNull(null), PositiveMonoid) import Data.Monoid.Factorial (FactorialMonoid(..), StableFactorialMonoid) import Data.Monoid.Textual (TextualMonoid(..)) import qualified Data.Monoid.Factorial as Factorial import qualified Data.Monoid.Textual as Textual import Prelude hiding (all, any, break, filter, foldl, foldl1, foldr, foldr1, lines, map, concatMap, length, null, reverse, scanl, scanr, scanl1, scanr1, span, splitAt) class Positioned p where extract :: p a -> a position :: p a -> Int data OffsetPositioned m = OffsetPositioned{offset :: !Int, -- ^ the current offset extractOffset :: m} data LinePositioned m = LinePositioned{fullOffset :: !Int, -- | the current line line :: !Int, lineStart :: !Int, extractLines :: m} -- | the current column column :: LinePositioned m -> Int column lp = position lp - lineStart lp instance Functor OffsetPositioned where fmap f (OffsetPositioned p c) = OffsetPositioned p (f c) instance Functor LinePositioned where fmap f (LinePositioned p l lp c) = LinePositioned p l lp (f c) instance Applicative OffsetPositioned where pure = OffsetPositioned 0 OffsetPositioned _ f <*> OffsetPositioned p c = OffsetPositioned p (f c) instance Applicative LinePositioned where pure = LinePositioned 0 0 0 LinePositioned _ _ _ f <*> LinePositioned p l lp c = LinePositioned p l lp (f c) instance Positioned OffsetPositioned where extract = extractOffset position = offset instance Positioned LinePositioned where extract = extractLines position = fullOffset instance Eq m => Eq (OffsetPositioned m) where OffsetPositioned{extractOffset= a} == OffsetPositioned{extractOffset= b} = a == b instance Eq m => Eq (LinePositioned m) where LinePositioned{extractLines= a} == LinePositioned{extractLines= b} = a == b instance Ord m => Ord (OffsetPositioned m) where compare OffsetPositioned{extractOffset= a} OffsetPositioned{extractOffset= b} = compare a b instance Ord m => Ord (LinePositioned m) where compare LinePositioned{extractLines= a} LinePositioned{extractLines= b} = compare a b instance Show m => Show (OffsetPositioned m) where showsPrec prec (OffsetPositioned pos c) = shows pos . (": " ++) . showsPrec prec c instance Show m => Show (LinePositioned m) where showsPrec prec (LinePositioned pos l lpos c) = ("Line " ++) . shows l . (", column " ++) . shows (pos - lpos) . (": " ++) . showsPrec prec c instance StableFactorialMonoid m => Monoid (OffsetPositioned m) where mempty = pure mempty mappend (OffsetPositioned p1 c1) (OffsetPositioned p2 c2) = OffsetPositioned (if p1 /= 0 || p2 == 0 then p1 else max 0 $ p2 - length c1) (mappend c1 c2) {-# INLINE mempty #-} {-# INLINE mappend #-} instance (StableFactorialMonoid m, TextualMonoid m) => Monoid (LinePositioned m) where mempty = pure mempty mappend (LinePositioned p1 l1 lp1 c1) (LinePositioned p2 l2 lp2 c2) | p1 /= 0 || p2 == 0 = LinePositioned p1 l1 lp1 c | otherwise = LinePositioned p2' l2' lp2' c where c = mappend c1 c2 p2' = max 0 $ p2 - length c1 lp2' = min p2' lp2 l2' = if l2 == 0 then 0 else max 0 $ l2 - Textual.foldl_' countLines 0 c1 countLines :: Int -> Char -> Int countLines n '\n' = succ n countLines n _ = n {-# INLINE mempty #-} {-# INLINE mappend #-} instance (StableFactorialMonoid m, MonoidNull m) => MonoidNull (OffsetPositioned m) where null = null . extractOffset {-# INLINE null #-} instance (StableFactorialMonoid m, TextualMonoid m, MonoidNull m) => MonoidNull (LinePositioned m) where null = null . extractLines {-# INLINE null #-} instance (StableFactorialMonoid m, PositiveMonoid m) => PositiveMonoid (OffsetPositioned m) instance (StableFactorialMonoid m, TextualMonoid m, PositiveMonoid m) => PositiveMonoid (LinePositioned m) instance (StableFactorialMonoid m, LeftReductiveMonoid m) => LeftReductiveMonoid (OffsetPositioned m) where isPrefixOf (OffsetPositioned _ c1) (OffsetPositioned _ c2) = isPrefixOf c1 c2 stripPrefix (OffsetPositioned _ c1) (OffsetPositioned p c2) = fmap (OffsetPositioned (p + length c1)) (stripPrefix c1 c2) {-# INLINE isPrefixOf #-} {-# INLINE stripPrefix #-} instance (StableFactorialMonoid m, TextualMonoid m, LeftReductiveMonoid m) => LeftReductiveMonoid (LinePositioned m) where isPrefixOf a b = isPrefixOf (extractLines a) (extractLines b) stripPrefix LinePositioned{extractLines= c1} (LinePositioned p l lpos c2) = let (lines, columns) = linesColumns' c1 len = length c1 in fmap (LinePositioned (p + len) (l + lines) (lpos + len - columns)) (stripPrefix c1 c2) {-# INLINE isPrefixOf #-} {-# INLINE stripPrefix #-} instance (StableFactorialMonoid m, LeftGCDMonoid m) => LeftGCDMonoid (OffsetPositioned m) where commonPrefix (OffsetPositioned p1 c1) (OffsetPositioned p2 c2) = OffsetPositioned (min p1 p2) (commonPrefix c1 c2) stripCommonPrefix (OffsetPositioned p1 c1) (OffsetPositioned p2 c2) = (OffsetPositioned (min p1 p2) prefix, OffsetPositioned (p1 + l) c1', OffsetPositioned (p2 + l) c2') where (prefix, c1', c2') = stripCommonPrefix c1 c2 l = length prefix {-# INLINE commonPrefix #-} {-# INLINE stripCommonPrefix #-} instance (StableFactorialMonoid m, TextualMonoid m, LeftGCDMonoid m) => LeftGCDMonoid (LinePositioned m) where commonPrefix (LinePositioned p1 l1 lp1 c1) (LinePositioned p2 l2 lp2 c2) = if p1 <= p2 then LinePositioned p1 l1 lp1 (commonPrefix c1 c2) else LinePositioned p2 l2 lp2 (commonPrefix c1 c2) stripCommonPrefix (LinePositioned p1 l1 lp1 c1) (LinePositioned p2 l2 lp2 c2) = let (prefix, c1', c2') = stripCommonPrefix c1 c2 (lines, columns) = linesColumns' prefix len = length prefix in (if p1 <= p2 then LinePositioned p1 l1 lp1 prefix else LinePositioned p2 l2 lp2 prefix, LinePositioned (p1 + len) (l1 + lines) (lp1 + len - columns) c1', LinePositioned (p2 + len) (l2 + lines) (lp2 + len - columns) c2') {-# INLINE commonPrefix #-} {-# INLINE stripCommonPrefix #-} instance (StableFactorialMonoid m, RightReductiveMonoid m) => RightReductiveMonoid (OffsetPositioned m) where isSuffixOf (OffsetPositioned _ c1) (OffsetPositioned _ c2) = isSuffixOf c1 c2 stripSuffix (OffsetPositioned _ c1) (OffsetPositioned p c2) = fmap (OffsetPositioned p) (stripSuffix c1 c2) {-# INLINE isSuffixOf #-} {-# INLINE stripSuffix #-} instance (StableFactorialMonoid m, TextualMonoid m, RightReductiveMonoid m) => RightReductiveMonoid (LinePositioned m) where isSuffixOf LinePositioned{extractLines=c1} LinePositioned{extractLines=c2} = isSuffixOf c1 c2 stripSuffix (LinePositioned p l lp c1) LinePositioned{extractLines=c2} = fmap (LinePositioned p l lp) (stripSuffix c1 c2) {-# INLINE isSuffixOf #-} {-# INLINE stripSuffix #-} instance (StableFactorialMonoid m, RightGCDMonoid m) => RightGCDMonoid (OffsetPositioned m) where commonSuffix (OffsetPositioned p1 c1) (OffsetPositioned p2 c2) = OffsetPositioned (min (p1 + length c1) (p2 + length c2) - length suffix) suffix where suffix = commonSuffix c1 c2 stripCommonSuffix (OffsetPositioned p1 c1) (OffsetPositioned p2 c2) = (OffsetPositioned p1 c1', OffsetPositioned p2 c2', OffsetPositioned (min (p1 + length c1') (p2 + length c2')) suffix) where (c1', c2', suffix) = stripCommonSuffix c1 c2 {-# INLINE commonSuffix #-} {-# INLINE stripCommonSuffix #-} instance (StableFactorialMonoid m, TextualMonoid m, RightGCDMonoid m) => RightGCDMonoid (LinePositioned m) where stripCommonSuffix (LinePositioned p1 l1 lp1 c1) (LinePositioned p2 l2 lp2 c2) = (LinePositioned p1 l1 lp1 c1', LinePositioned p2 l2 lp2 c2', if p1 < p2 then LinePositioned (p1 + len1) (l1 + lines1) (lp1 + len1 - columns1) suffix else LinePositioned (p2 + len2) (l2 + lines2) (lp2 + len2 - columns2) suffix) where (c1', c2', suffix) = stripCommonSuffix c1 c2 len1 = length c1' len2 = length c2' (lines1, columns1) = linesColumns' c1' (lines2, columns2) = linesColumns' c2' instance StableFactorialMonoid m => FactorialMonoid (OffsetPositioned m) where factors (OffsetPositioned p c) = snd $ List.mapAccumL next p (factors c) where next p1 c1 = (succ p1, OffsetPositioned p1 c1) primePrefix (OffsetPositioned p c) = OffsetPositioned p (primePrefix c) splitPrimePrefix (OffsetPositioned p c) = fmap rewrap (splitPrimePrefix c) where rewrap (cp, cs) = (OffsetPositioned p cp, OffsetPositioned (succ p) cs) splitPrimeSuffix (OffsetPositioned p c) = fmap rewrap (splitPrimeSuffix c) where rewrap (cp, cs) = (OffsetPositioned p cp, OffsetPositioned (p + length cp) cs) foldl f a0 (OffsetPositioned p0 c0) = fst $ Factorial.foldl f' (a0, p0) c0 where f' (a, p) c = (f a (OffsetPositioned p c), succ p) foldl' f a0 (OffsetPositioned p0 c0) = fst $ Factorial.foldl' f' (a0, p0) c0 where f' (a, p) c = let a' = f a (OffsetPositioned p c) in seq a' (a', succ p) foldr f a0 (OffsetPositioned p0 c0) = Factorial.foldr f' (const a0) c0 p0 where f' c cont p = f (OffsetPositioned p c) (cont $! succ p) length (OffsetPositioned _ c) = length c foldMap f (OffsetPositioned p c) = appEndo (Factorial.foldMap f' c) (const mempty) p where -- f' :: m -> Endo (Int -> m) f' prime = Endo (\cont pos-> f (OffsetPositioned pos prime) <> cont (succ pos)) spanMaybe s0 f (OffsetPositioned p0 t) = rewrap $ Factorial.spanMaybe (s0, p0) f' t where f' (s, p) prime = do s' <- f s (OffsetPositioned p prime) let p' = succ p Just $! seq p' (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) spanMaybe' s0 f (OffsetPositioned p0 t) = rewrap $! Factorial.spanMaybe' (s0, p0) f' t where f' (s, p) prime = do s' <- f s (OffsetPositioned p prime) let p' = succ p Just $! s' `seq` p' `seq` (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) span f (OffsetPositioned p0 t) = rewrap $ Factorial.spanMaybe' p0 f' t where f' p prime = if f (OffsetPositioned p prime) then Just $! succ p else Nothing rewrap (prefix, suffix, p) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix) splitAt n m@(OffsetPositioned p c) | n <= 0 = (mempty, m) | n >= length c = (m, mempty) | otherwise = (OffsetPositioned p prefix, OffsetPositioned (p + n) suffix) where (prefix, suffix) = splitAt n c drop n (OffsetPositioned p c) = OffsetPositioned (p + n) (Factorial.drop n c) take n (OffsetPositioned p c) = OffsetPositioned p (Factorial.take n c) reverse (OffsetPositioned p c) = OffsetPositioned p (Factorial.reverse c) {-# INLINE primePrefix #-} {-# INLINE splitPrimePrefix #-} {-# INLINE splitPrimeSuffix #-} {-# INLINE foldl #-} {-# INLINE foldl' #-} {-# INLINE foldr #-} {-# INLINE foldMap #-} {-# INLINE length #-} {-# INLINE span #-} {-# INLINE splitAt #-} {-# INLINE take #-} {-# INLINE drop #-} {-# INLINE reverse #-} instance (StableFactorialMonoid m, TextualMonoid m) => FactorialMonoid (LinePositioned m) where factors (LinePositioned p0 l0 lp0 c) = snd $ List.mapAccumL next (p0, l0, lp0) (factors c) where next (p, l, lp) c1 | characterPrefix c1 == Just '\n' = ((succ p, succ l, p), LinePositioned p l lp c1) | otherwise = ((succ p, l, lp), LinePositioned p l lp c1) primePrefix (LinePositioned p l lp c) = LinePositioned p l lp (primePrefix c) splitPrimePrefix (LinePositioned p l lp c) = fmap rewrap (splitPrimePrefix c) where rewrap (cp, cs) = (LinePositioned p l lp cp, if characterPrefix cp == Just '\n' then LinePositioned (succ p) (succ l) p cs else LinePositioned (succ p) l lp cs) splitPrimeSuffix (LinePositioned p l lp c) = fmap rewrap (splitPrimeSuffix c) where rewrap (cp, cs) = (LinePositioned p l lp cp, LinePositioned p' (l + lines) (p' - columns) cs) where len = length cp (lines, columns) = linesColumns cp p' = p + len foldl f a0 (LinePositioned p0 l0 lp0 c0) = fstOf4 $! Factorial.foldl f' (a0, p0, l0, lp0) c0 where f' (a, p, l, lp) c | characterPrefix c == Just '\n' = (f a (LinePositioned p l lp c), succ p, succ l, p) | otherwise = (f a (LinePositioned p l lp c), succ p, l, lp) foldl' f a0 (LinePositioned p0 l0 lp0 c0) = fstOf4 $! Factorial.foldl' f' (a0, p0, l0, lp0) c0 where f' (a, p, l, lp) c = let a' = f a (LinePositioned p l lp c) in seq a' (if characterPrefix c == Just '\n' then (a', succ p, succ l, p) else (a', succ p, l, lp)) foldr f a0 (LinePositioned p0 l0 lp0 c0) = Factorial.foldr f' (const3 a0) c0 p0 l0 lp0 where f' c cont p l lp | characterPrefix c == Just '\n' = f (LinePositioned p l lp c) $ ((cont $! succ p) $! succ l) p | otherwise = f (LinePositioned p l lp c) $ (cont $! succ p) l lp length = length . extractLines foldMap f (LinePositioned p0 l0 lp0 c) = appEndo (Factorial.foldMap f' c) (const mempty) p0 l0 lp0 where -- f' :: m -> Endo (Int -> Int -> Int -> m) f' prime = Endo (\cont p l lp-> f (LinePositioned p l lp prime) <> if characterPrefix prime == Just '\n' then cont (succ p) (succ l) p else cont (succ p) l lp) spanMaybe s0 f (LinePositioned p0 l0 lp0 c) = rewrap $ Factorial.spanMaybe (s0, p0, l0, lp0) f' c where f' (s, p, l, lp) prime = do s' <- f s (LinePositioned p l lp prime) let p' = succ p l' = succ l Just $! p' `seq` if characterPrefix prime == Just '\n' then l' `seq` (s', p', l', p) else (s', p', l, lp) rewrap (prefix, suffix, (s, p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix, s) spanMaybe' s0 f (LinePositioned p0 l0 lp0 c) = rewrap $! Factorial.spanMaybe' (s0, p0, l0, lp0) f' c where f' (s, p, l, lp) prime = do s' <- f s (LinePositioned p l lp prime) let p' = succ p l' = succ l Just $! s' `seq` p' `seq` if characterPrefix prime == Just '\n' then l' `seq` (s', p', l', p) else (s', p', l, lp) rewrap (prefix, suffix, (s, p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix, s) span f (LinePositioned p0 l0 lp0 t) = rewrap $ Factorial.spanMaybe' (p0, l0, lp0) f' t where f' (p, l, lp) prime = if f (LinePositioned p l lp prime) then let p' = succ p l' = succ l in Just $! p' `seq` if characterPrefix prime == Just '\n' then l' `seq` (p', l', p) else (p', l, lp) else Nothing rewrap (prefix, suffix, (p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix) splitAt n m@(LinePositioned p l lp c) | n <= 0 = (mempty, m) | n >= length c = (m, mempty) | otherwise = (LinePositioned p l lp prefix, LinePositioned p' (l + lines) (p' - columns) suffix) where (prefix, suffix) = splitAt n c (lines, columns) = linesColumns prefix p' = p + n take n (LinePositioned p l lp c) = LinePositioned p l lp (Factorial.take n c) reverse (LinePositioned p l lp c) = LinePositioned p l lp (Factorial.reverse c) {-# INLINE primePrefix #-} {-# INLINE splitPrimePrefix #-} {-# INLINE splitPrimeSuffix #-} {-# INLINE foldl #-} {-# INLINE foldl' #-} {-# INLINE foldr #-} {-# INLINE foldMap #-} {-# INLINE length #-} {-# INLINE span #-} {-# INLINE splitAt #-} {-# INLINE take #-} {-# INLINE drop #-} {-# INLINE reverse #-} instance StableFactorialMonoid m => StableFactorialMonoid (OffsetPositioned m) instance (StableFactorialMonoid m, TextualMonoid m) => StableFactorialMonoid (LinePositioned m) instance IsString m => IsString (OffsetPositioned m) where fromString = pure . fromString instance IsString m => IsString (LinePositioned m) where fromString = pure . fromString instance (StableFactorialMonoid m, TextualMonoid m) => TextualMonoid (OffsetPositioned m) where splitCharacterPrefix (OffsetPositioned p c) = fmap (fmap $ OffsetPositioned $ succ p) (splitCharacterPrefix c) fromText = pure . fromText singleton = pure . singleton characterPrefix = characterPrefix . extractOffset map f (OffsetPositioned p c) = OffsetPositioned p (map f c) concatMap f (OffsetPositioned p c) = OffsetPositioned p (concatMap (extractOffset . f) c) all p = all p . extractOffset any p = any p . extractOffset foldl ft fc a0 (OffsetPositioned p0 c0) = fst $ Textual.foldl ft' fc' (a0, p0) c0 where ft' (a, p) c = (ft a (OffsetPositioned p c), succ p) fc' (a, p) c = (fc a c, succ p) foldl' ft fc a0 (OffsetPositioned p0 c0) = fst $ Textual.foldl' ft' fc' (a0, p0) c0 where ft' (a, p) c = ((,) $! ft a (OffsetPositioned p c)) $! succ p fc' (a, p) c = ((,) $! fc a c) $! succ p foldr ft fc a0 (OffsetPositioned p0 c0) = snd $ Textual.foldr ft' fc' (p0, a0) c0 where ft' c (p, a) = (succ p, ft (OffsetPositioned p c) a) fc' c (p, a) = (succ p, fc c a) scanl f ch (OffsetPositioned p c) = OffsetPositioned p (Textual.scanl f ch c) scanl1 f (OffsetPositioned p c) = OffsetPositioned p (Textual.scanl1 f c) scanr f ch (OffsetPositioned p c) = OffsetPositioned p (Textual.scanr f ch c) scanr1 f (OffsetPositioned p c) = OffsetPositioned p (Textual.scanr1 f c) mapAccumL f a0 (OffsetPositioned p c) = fmap (OffsetPositioned p) (Textual.mapAccumL f a0 c) mapAccumR f a0 (OffsetPositioned p c) = fmap (OffsetPositioned p) (Textual.mapAccumR f a0 c) spanMaybe s0 ft fc (OffsetPositioned p0 t) = rewrap $ Textual.spanMaybe (s0, p0) ft' fc' t where ft' (s, p) prime = do s' <- ft s (OffsetPositioned p prime) let p' = succ p Just $! seq p' (s', p') fc' (s, p) c = do s' <- fc s c let p' = succ p Just $! seq p' (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) spanMaybe' s0 ft fc (OffsetPositioned p0 t) = rewrap $! Textual.spanMaybe' (s0, p0) ft' fc' t where ft' (s, p) prime = do s' <- ft s (OffsetPositioned p prime) let p' = succ p Just $! s' `seq` p' `seq` (s', p') fc' (s, p) c = do s' <- fc s c let p' = succ p Just $! s' `seq` p' `seq` (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) span ft fc (OffsetPositioned p0 t) = rewrap $ Textual.spanMaybe' p0 ft' fc' t where ft' p prime = if ft (OffsetPositioned p prime) then Just $! succ p else Nothing fc' p c = if fc c then Just $! succ p else Nothing rewrap (prefix, suffix, p) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix) split f (OffsetPositioned p0 c0) = rewrap p0 (Textual.split f c0) where rewrap _ [] = [] rewrap p (c:rest) = OffsetPositioned p c : rewrap (p + length c) rest find p = find p . extractOffset foldl_ fc a0 (OffsetPositioned _ c) = Textual.foldl_ fc a0 c foldl_' fc a0 (OffsetPositioned _ c) = Textual.foldl_' fc a0 c foldr_ fc a0 (OffsetPositioned _ c) = Textual.foldr_ fc a0 c spanMaybe_ s0 fc (OffsetPositioned p0 t) = rewrap $ Textual.spanMaybe_' (s0, p0) fc' t where fc' (s, p) c = do s' <- fc s c let p' = succ p Just $! seq p' (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) spanMaybe_' s0 fc (OffsetPositioned p0 t) = rewrap $! Textual.spanMaybe_' (s0, p0) fc' t where fc' (s, p) c = do s' <- fc s c let p' = succ p Just $! s' `seq` p' `seq` (s', p') rewrap (prefix, suffix, (s, p)) = (OffsetPositioned p0 prefix, OffsetPositioned p suffix, s) span_ bt fc (OffsetPositioned p0 t) = rewrap $ Textual.span_ bt fc t where rewrap (prefix, suffix) = (OffsetPositioned p0 prefix, OffsetPositioned (p0 + length prefix) suffix) break_ bt fc (OffsetPositioned p0 t) = rewrap $ Textual.break_ bt fc t where rewrap (prefix, suffix) = (OffsetPositioned p0 prefix, OffsetPositioned (p0 + length prefix) suffix) dropWhile_ bt fc t = snd (span_ bt fc t) takeWhile_ bt fc (OffsetPositioned p t) = OffsetPositioned p (takeWhile_ bt fc t) {-# INLINE characterPrefix #-} {-# INLINE splitCharacterPrefix #-} {-# INLINE map #-} {-# INLINE concatMap #-} {-# INLINE foldl' #-} {-# INLINE foldr #-} {-# INLINE spanMaybe' #-} {-# INLINE span #-} {-# INLINE foldl_' #-} {-# INLINE foldr_ #-} {-# INLINE any #-} {-# INLINE all #-} {-# INLINE spanMaybe_' #-} {-# INLINE span_ #-} {-# INLINE break_ #-} {-# INLINE dropWhile_ #-} {-# INLINE takeWhile_ #-} {-# INLINE split #-} {-# INLINE find #-} instance (StableFactorialMonoid m, TextualMonoid m) => TextualMonoid (LinePositioned m) where splitCharacterPrefix (LinePositioned p l lp c) = case splitCharacterPrefix c of Nothing -> Nothing Just ('\n', rest) -> Just ('\n', LinePositioned (succ p) (succ l) p rest) Just (ch, rest) -> Just (ch, LinePositioned (succ p) l lp rest) fromText = pure . fromText singleton = pure . singleton characterPrefix = characterPrefix . extractLines map f (LinePositioned p l lp c) = LinePositioned p l lp (map f c) concatMap f (LinePositioned p l lp c) = LinePositioned p l lp (concatMap (extractLines . f) c) all p = all p . extractLines any p = any p . extractLines foldl ft fc a0 (LinePositioned p0 l0 lp0 c0) = fstOf4 $ Textual.foldl ft' fc' (a0, p0, l0, lp0) c0 where ft' (a, p, l, lp) c = (ft a (LinePositioned p l lp c), succ p, l, lp) fc' (a, p, l, _lp) '\n' = (fc a '\n', succ p, succ l, p) fc' (a, p, l, lp) c = (fc a c, succ p, l, lp) foldl' ft fc a0 (LinePositioned p0 l0 lp0 c0) = fstOf4 $ Textual.foldl' ft' fc' (a0, p0, l0, lp0) c0 where ft' (a, p, l, lp) c = let a' = ft a (LinePositioned p l lp c) p' = succ p in a' `seq` p' `seq` (a', p', l, lp) fc' (a, p, l, lp) c = let a' = fc a c p' = succ p l' = succ l in a' `seq` p' `seq` if c == '\n' then l' `seq` (a', p', l', p) else (a', p', l, lp) foldr ft fc a0 (LinePositioned p0 l0 lp0 c0) = Textual.foldr ft' fc' (const3 a0) c0 p0 l0 lp0 where ft' c cont p l lp = ft (LinePositioned p l lp c) $ (cont $! succ p) l lp fc' c cont p l lp | c == '\n' = fc c $ ((cont $! succ p) $! succ l) p | otherwise = fc c $ (cont $! succ p) l lp spanMaybe s0 ft fc (LinePositioned p0 l0 lp0 t) = rewrap $ Textual.spanMaybe (s0, p0, l0, lp0) ft' fc' t where ft' (s, p, l, lp) prime = do s' <- ft s (LinePositioned p l lp prime) let p' = succ p Just $! seq p' (s', p', l, lp) fc' (s, p, l, lp) c = fc s c >>= \s'-> Just $! seq p' (if c == '\n' then seq l' (s', p', l', p) else (s', p', l, lp)) where p' = succ p l' = succ l rewrap (prefix, suffix, (s, p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix, s) spanMaybe' s0 ft fc (LinePositioned p0 l0 lp0 t) = rewrap $! Textual.spanMaybe' (s0, p0, l0, lp0) ft' fc' t where ft' (s, p, l, lp) prime = do s' <- ft s (LinePositioned p l lp prime) let p' = succ p Just $! s' `seq` p' `seq` (s', p', l, lp) fc' (s, p, l, lp) c = do s' <- fc s c let p' = succ p l' = succ l Just $! s' `seq` p' `seq` (if c == '\n' then seq l' (s', p', l', p) else (s', p', l, lp)) rewrap (prefix, suffix, (s, p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix, s) span ft fc (LinePositioned p0 l0 lp0 t) = rewrap $ Textual.spanMaybe' (p0, l0, lp0) ft' fc' t where ft' (p, l, lp) prime = if ft (LinePositioned p l lp prime) then let p' = succ p in p' `seq` Just (p', l, lp) else Nothing fc' (p, l, lp) c | fc c = Just $! seq p' (if c == '\n' then seq l' (p', l', p) else (p', l, lp)) | otherwise = Nothing where p' = succ p l' = succ l rewrap (prefix, suffix, (p, l, lp)) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p l lp suffix) scanl f ch (LinePositioned p l lp c) = LinePositioned p l lp (Textual.scanl f ch c) scanl1 f (LinePositioned p l lp c) = LinePositioned p l lp (Textual.scanl1 f c) scanr f ch (LinePositioned p l lp c) = LinePositioned p l lp (Textual.scanr f ch c) scanr1 f (LinePositioned p l lp c) = LinePositioned p l lp (Textual.scanr1 f c) mapAccumL f a0 (LinePositioned p l lp c) = fmap (LinePositioned p l lp) (Textual.mapAccumL f a0 c) mapAccumR f a0 (LinePositioned p l lp c) = fmap (LinePositioned p l lp) (Textual.mapAccumR f a0 c) split f (LinePositioned p0 l0 lp0 c0) = rewrap p0 l0 lp0 (Textual.split f c0) where rewrap _ _ _ [] = [] rewrap p l lp (c:rest) = LinePositioned p l lp c : rewrap p' (l + lines) (if lines == 0 then lp else p' - columns) rest where p' = p + length c (lines, columns) = linesColumns c find p = find p . extractLines foldl_ fc a0 (LinePositioned _ _ _ t) = Textual.foldl_ fc a0 t foldl_' fc a0 (LinePositioned _ _ _ t) = Textual.foldl_' fc a0 t foldr_ fc a0 (LinePositioned _ _ _ t) = Textual.foldr_ fc a0 t spanMaybe_ s0 fc (LinePositioned p0 l0 lp0 t) = rewrap $ Textual.spanMaybe_ s0 fc t where rewrap (prefix, suffix, s) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p1 (l0 + l) (if l == 0 then lp0 else p1 - col) suffix, s) where (l, col) = linesColumns prefix p1 = p0 + length prefix spanMaybe_' s0 fc (LinePositioned p0 l0 lp0 t) = rewrap $ Textual.spanMaybe_' s0 fc t where rewrap (prefix, suffix, s) = p1 `seq` l1 `seq` lp1 `seq` (LinePositioned p0 l0 lp0 prefix, LinePositioned p1 l1 lp1 suffix, s) where (l, col) = linesColumns' prefix p1 = p0 + length prefix l1 = l0 + l lp1 = if l == 0 then lp0 else p1 - col span_ bt fc (LinePositioned p0 l0 lp0 t) = rewrap $ Textual.span_ bt fc t where rewrap (prefix, suffix) = (LinePositioned p0 l0 lp0 prefix, LinePositioned p1 (l0 + l) (if l == 0 then lp0 else p1 - col) suffix) where (l, col) = linesColumns' prefix p1 = p0 + length prefix break_ bt fc t = span_ (not bt) (not . fc) t dropWhile_ bt fc t = snd (span_ bt fc t) takeWhile_ bt fc (LinePositioned p l lp t) = LinePositioned p l lp (takeWhile_ bt fc t) {-# INLINE characterPrefix #-} {-# INLINE splitCharacterPrefix #-} {-# INLINE map #-} {-# INLINE concatMap #-} {-# INLINE foldl' #-} {-# INLINE foldr #-} {-# INLINE spanMaybe' #-} {-# INLINE span #-} {-# INLINE split #-} {-# INLINE find #-} {-# INLINE foldl_' #-} {-# INLINE foldr_ #-} {-# INLINE any #-} {-# INLINE all #-} {-# INLINE spanMaybe_' #-} {-# INLINE span_ #-} {-# INLINE break_ #-} {-# INLINE dropWhile_ #-} {-# INLINE takeWhile_ #-} linesColumns :: TextualMonoid m => m -> (Int, Int) linesColumns t = Textual.foldl (const . fmap succ) fc (0, 0) t where fc (l, _) '\n' = (succ l, 0) fc (l, c) _ = (l, succ c) linesColumns' :: TextualMonoid m => m -> (Int, Int) linesColumns' t = Textual.foldl' (const . fmap succ) fc (0, 0) t where fc (l, _) '\n' = let l' = succ l in seq l' (l', 0) fc (l, c) _ = let c' = succ c in seq c' (l, c') {-# INLINE linesColumns #-} {-# INLINE linesColumns' #-} const3 :: a -> b -> c -> d -> a const3 a _p _l _lp = a {-# INLINE const3 #-} fstOf4 :: (a, b, c, d) -> a fstOf4 (a, _, _, _) = a {-# INLINE fstOf4 #-}