-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Subclasses of Monoid -- -- A hierarchy of subclasses of Monoid together with their -- instances for all data structures from base, containers, and text -- packages. @package monoid-subclasses @version 0.4.3 -- | This module defines the MonoidNull class and some of its instances. module Data.Monoid.Null -- | Extension of Monoid that allows testing a value for equality -- with mempty. The following law must hold: -- --
--   null x == (x == mempty)
--   
-- -- Furthermore, the performance of this method should be constant, -- i.e., independent of the length of its argument. class Monoid m => MonoidNull m null :: MonoidNull m => m -> Bool -- | Subclass of Monoid for types whose values have no inverse, with -- the exception of mempty. More formally, the class instances -- must satisfy the following law: -- --
--   null (x <> y) == (null x && null y)
--   
class MonoidNull m => PositiveMonoid m instance Data.Monoid.Null.MonoidNull () instance Data.Monoid.Null.MonoidNull GHC.Types.Ordering instance Data.Monoid.Null.MonoidNull Data.Monoid.All instance Data.Monoid.Null.MonoidNull Data.Monoid.Any instance Data.Monoid.Null.MonoidNull (Data.Monoid.First a) instance Data.Monoid.Null.MonoidNull (Data.Monoid.Last a) instance Data.Monoid.Null.MonoidNull a => Data.Monoid.Null.MonoidNull (Data.Monoid.Dual a) instance (GHC.Num.Num a, GHC.Classes.Eq a) => Data.Monoid.Null.MonoidNull (Data.Monoid.Sum a) instance (GHC.Num.Num a, GHC.Classes.Eq a) => Data.Monoid.Null.MonoidNull (Data.Monoid.Product a) instance GHC.Base.Monoid a => Data.Monoid.Null.MonoidNull (GHC.Base.Maybe a) instance (Data.Monoid.Null.MonoidNull a, Data.Monoid.Null.MonoidNull b) => Data.Monoid.Null.MonoidNull (a, b) instance (Data.Monoid.Null.MonoidNull a, Data.Monoid.Null.MonoidNull b, Data.Monoid.Null.MonoidNull c) => Data.Monoid.Null.MonoidNull (a, b, c) instance (Data.Monoid.Null.MonoidNull a, Data.Monoid.Null.MonoidNull b, Data.Monoid.Null.MonoidNull c, Data.Monoid.Null.MonoidNull d) => Data.Monoid.Null.MonoidNull (a, b, c, d) instance Data.Monoid.Null.MonoidNull [x] instance Data.Monoid.Null.MonoidNull Data.ByteString.Internal.ByteString instance Data.Monoid.Null.MonoidNull Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Null.MonoidNull Data.Text.Internal.Text instance Data.Monoid.Null.MonoidNull Data.Text.Internal.Lazy.Text instance GHC.Classes.Ord k => Data.Monoid.Null.MonoidNull (Data.Map.Base.Map k v) instance Data.Monoid.Null.MonoidNull (Data.IntMap.Base.IntMap v) instance Data.Monoid.Null.MonoidNull Data.IntSet.Base.IntSet instance Data.Monoid.Null.MonoidNull (Data.Sequence.Seq a) instance GHC.Classes.Ord a => Data.Monoid.Null.MonoidNull (Data.Set.Base.Set a) instance Data.Monoid.Null.MonoidNull (Data.Vector.Vector a) instance Data.Monoid.Null.PositiveMonoid () instance Data.Monoid.Null.PositiveMonoid GHC.Types.Ordering instance Data.Monoid.Null.PositiveMonoid Data.Monoid.All instance Data.Monoid.Null.PositiveMonoid Data.Monoid.Any instance Data.Monoid.Null.PositiveMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Null.PositiveMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Null.PositiveMonoid Data.Text.Internal.Text instance Data.Monoid.Null.PositiveMonoid Data.Text.Internal.Lazy.Text instance GHC.Base.Monoid a => Data.Monoid.Null.PositiveMonoid (GHC.Base.Maybe a) instance Data.Monoid.Null.PositiveMonoid (Data.Monoid.First a) instance Data.Monoid.Null.PositiveMonoid (Data.Monoid.Last a) instance Data.Monoid.Null.PositiveMonoid a => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Dual a) instance Data.Monoid.Null.PositiveMonoid [x] instance GHC.Classes.Ord k => Data.Monoid.Null.PositiveMonoid (Data.Map.Base.Map k v) instance Data.Monoid.Null.PositiveMonoid (Data.IntMap.Base.IntMap v) instance Data.Monoid.Null.PositiveMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Null.PositiveMonoid (Data.Sequence.Seq a) instance GHC.Classes.Ord a => Data.Monoid.Null.PositiveMonoid (Data.Set.Base.Set a) instance Data.Monoid.Null.PositiveMonoid (Data.Vector.Vector a) -- | This module defines the FactorialMonoid class and some of its -- instances. module Data.Monoid.Factorial -- | Class of monoids that can be split into irreducible (i.e., -- atomic or prime) factors in a unique way. Factors of a -- Product are literally its prime factors: -- --
--   factors (Product 12) == [Product 2, Product 2, Product 3]
--   
-- -- Factors of a list are not its elements but all its single-item -- sublists: -- --
--   factors "abc" == ["a", "b", "c"]
--   
-- -- The methods of this class satisfy the following laws: -- --
--   mconcat . factors == id
--   null == List.null . factors
--   List.all (\prime-> factors prime == [prime]) . factors
--   factors == unfoldr splitPrimePrefix == List.reverse . unfoldr (fmap swap . splitPrimeSuffix)
--   reverse == mconcat . List.reverse . factors
--   primePrefix == maybe mempty fst . splitPrimePrefix
--   primeSuffix == maybe mempty snd . splitPrimeSuffix
--   inits == List.map mconcat . List.inits . factors
--   tails == List.map mconcat . List.tails . factors
--   foldl f a == List.foldl f a . factors
--   foldl' f a == List.foldl' f a . factors
--   foldr f a == List.foldr f a . factors
--   span p m == (mconcat l, mconcat r) where (l, r) = List.span p (factors m)
--   List.all (List.all (not . pred) . factors) . split pred
--   mconcat . intersperse prime . split (== prime) == id
--   splitAt i m == (mconcat l, mconcat r) where (l, r) = List.splitAt i (factors m)
--   spanMaybe () (const $ bool Nothing (Maybe ()) . p) m == (takeWhile p m, dropWhile p m, ())
--   spanMaybe s0 (\s m-> Just $ f s m) m0 == (m0, mempty, foldl f s0 m0)
--   let (prefix, suffix, s') = spanMaybe s f m
--       foldMaybe = foldl g (Just s)
--       g s m = s >>= flip f m
--   in all ((Nothing ==) . foldMaybe) (inits prefix)
--      && prefix == last (filter (isJust . foldMaybe) $ inits m)
--      && Just s' == foldMaybe prefix
--      && m == prefix <> suffix
--   
-- -- A minimal instance definition must implement factors or -- splitPrimePrefix. Other methods are provided and should be -- implemented only for performance reasons. class MonoidNull m => FactorialMonoid m where factors = unfoldr splitPrimePrefix primePrefix = maybe mempty fst . splitPrimePrefix primeSuffix = maybe mempty snd . splitPrimeSuffix splitPrimePrefix x = case factors x of { [] -> Nothing prefix : rest -> Just (prefix, mconcat rest) } splitPrimeSuffix x = case factors x of { [] -> Nothing fs -> Just (mconcat (init fs), last fs) } inits = foldr (\ m l -> mempty : map (mappend m) l) [mempty] tails m = m : maybe [] (tails . snd) (splitPrimePrefix m) foldl f f0 = foldl f f0 . factors foldl' f f0 = foldl' f f0 . factors foldr f f0 = foldr f f0 . factors length = length . factors foldMap f = foldr (mappend . f) mempty span p m0 = spanAfter id m0 where spanAfter f m = case splitPrimePrefix m of { Just (prime, rest) | p prime -> spanAfter (f . mappend prime) rest _ -> (f mempty, m) } break = span . (not .) spanMaybe s0 f m0 = spanAfter id s0 m0 where spanAfter g s m = case splitPrimePrefix m of { Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, m, s) Nothing -> (m0, m, s) } spanMaybe' s0 f m0 = spanAfter id s0 m0 where spanAfter g s m = seq s $ case splitPrimePrefix m of { Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, m, s) Nothing -> (m0, m, s) } split p m = prefix : splitRest where (prefix, rest) = break p m splitRest = case splitPrimePrefix rest of { Nothing -> [] Just (_, tl) -> split p tl } takeWhile p = fst . span p dropWhile p = snd . span p splitAt n0 m0 | n0 <= 0 = (mempty, m0) | otherwise = split' n0 id m0 where split' 0 f m = (f mempty, m) split' n f m = case splitPrimePrefix m of { Nothing -> (f mempty, m) Just (prime, rest) -> split' (pred n) (f . mappend prime) rest } drop n p = snd (splitAt n p) take n p = fst (splitAt n p) reverse = mconcat . reverse . factors -- | Returns a list of all prime factors; inverse of mconcat. factors :: FactorialMonoid m => m -> [m] -- | The prime prefix, mempty if none. primePrefix :: FactorialMonoid m => m -> m -- | The prime suffix, mempty if none. primeSuffix :: FactorialMonoid m => m -> m -- | Splits the argument into its prime prefix and the remaining suffix. -- Returns Nothing for mempty. splitPrimePrefix :: FactorialMonoid m => m -> Maybe (m, m) -- | Splits the argument into its prime suffix and the remaining prefix. -- Returns Nothing for mempty. splitPrimeSuffix :: FactorialMonoid m => m -> Maybe (m, m) -- | Returns the list of all prefixes of the argument, mempty first. inits :: FactorialMonoid m => m -> [m] -- | Returns the list of all suffixes of the argument, mempty last. tails :: FactorialMonoid m => m -> [m] -- | Like foldl from Data.List on the list of -- primes. foldl :: FactorialMonoid m => (a -> m -> a) -> a -> m -> a -- | Like foldl' from Data.List on the list of -- primes. foldl' :: FactorialMonoid m => (a -> m -> a) -> a -> m -> a -- | Like foldr from Data.List on the list of -- primes. foldr :: FactorialMonoid m => (m -> a -> a) -> a -> m -> a -- | The length of the list of primes. length :: FactorialMonoid m => m -> Int -- | Generalizes foldMap from Data.Foldable, except the -- function arguments are prime factors rather than the structure -- elements. foldMap :: (FactorialMonoid m, Monoid n) => (m -> n) -> m -> n -- | Like span from Data.List on the list of primes. span :: FactorialMonoid m => (m -> Bool) -> m -> (m, m) -- | Equivalent to break from Data.List. break :: FactorialMonoid m => (m -> Bool) -> m -> (m, m) -- | Splits the monoid into components delimited by prime separators -- satisfying the given predicate. The primes satisfying the predicate -- are not a part of the result. split :: FactorialMonoid m => (m -> Bool) -> m -> [m] -- | Equivalent to takeWhile from Data.List. takeWhile :: FactorialMonoid m => (m -> Bool) -> m -> m -- | Equivalent to dropWhile from Data.List. dropWhile :: FactorialMonoid m => (m -> Bool) -> m -> m -- | A stateful variant of span, threading the result of the test -- function as long as it returns Just. spanMaybe :: FactorialMonoid m => s -> (s -> m -> Maybe s) -> m -> (m, m, s) -- | Strict version of spanMaybe. spanMaybe' :: FactorialMonoid m => s -> (s -> m -> Maybe s) -> m -> (m, m, s) -- | Like splitAt from Data.List on the list of -- primes. splitAt :: FactorialMonoid m => Int -> m -> (m, m) -- | Equivalent to drop from Data.List. drop :: FactorialMonoid m => Int -> m -> m -- | Equivalent to take from Data.List. take :: FactorialMonoid m => Int -> m -> m -- | Equivalent to reverse from Data.List. reverse :: FactorialMonoid m => m -> m -- | A subclass of FactorialMonoid whose instances satisfy this -- additional law: -- --
--   factors (a <> b) == factors a <> factors b
--   
class (FactorialMonoid m, PositiveMonoid m) => StableFactorialMonoid m -- | A mapM equivalent. mapM :: (FactorialMonoid a, Monoid b, Monad m) => (a -> m b) -> a -> m b -- | A mapM_ equivalent. mapM_ :: (FactorialMonoid a, Monad m) => (a -> m b) -> a -> m () instance Data.Monoid.Factorial.FactorialMonoid () instance Data.Monoid.Factorial.FactorialMonoid a => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Dual a) instance (GHC.Real.Integral a, GHC.Classes.Eq a) => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Product a) instance Data.Monoid.Factorial.FactorialMonoid a => Data.Monoid.Factorial.FactorialMonoid (GHC.Base.Maybe a) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Factorial.FactorialMonoid b) => Data.Monoid.Factorial.FactorialMonoid (a, b) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Factorial.FactorialMonoid b, Data.Monoid.Factorial.FactorialMonoid c) => Data.Monoid.Factorial.FactorialMonoid (a, b, c) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Factorial.FactorialMonoid b, Data.Monoid.Factorial.FactorialMonoid c, Data.Monoid.Factorial.FactorialMonoid d) => Data.Monoid.Factorial.FactorialMonoid (a, b, c, d) instance Data.Monoid.Factorial.FactorialMonoid [x] instance Data.Monoid.Factorial.FactorialMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Factorial.FactorialMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Factorial.FactorialMonoid Data.Text.Internal.Text instance Data.Monoid.Factorial.FactorialMonoid Data.Text.Internal.Lazy.Text instance GHC.Classes.Ord k => Data.Monoid.Factorial.FactorialMonoid (Data.Map.Base.Map k v) instance Data.Monoid.Factorial.FactorialMonoid (Data.IntMap.Base.IntMap a) instance Data.Monoid.Factorial.FactorialMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Factorial.FactorialMonoid (Data.Sequence.Seq a) instance GHC.Classes.Ord a => Data.Monoid.Factorial.FactorialMonoid (Data.Set.Base.Set a) instance Data.Monoid.Factorial.FactorialMonoid (Data.Vector.Vector a) instance Data.Monoid.Factorial.StableFactorialMonoid () instance Data.Monoid.Factorial.StableFactorialMonoid a => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Dual a) instance Data.Monoid.Factorial.StableFactorialMonoid [x] instance Data.Monoid.Factorial.StableFactorialMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Factorial.StableFactorialMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Factorial.StableFactorialMonoid Data.Text.Internal.Text instance Data.Monoid.Factorial.StableFactorialMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Factorial.StableFactorialMonoid (Data.Sequence.Seq a) instance Data.Monoid.Factorial.StableFactorialMonoid (Data.Vector.Vector a) -- | This module defines the Monoid => ReductiveMonoid -- => (CancellativeMonoid, GCDMonoid) class hierarchy. -- -- The ReductiveMonoid class introduces operation </> -- which is the inverse of <>. For the Sum monoid, -- this operation is subtraction; for Product it is division and -- for Set it's the set difference. A ReductiveMonoid is -- not a full group because </> may return Nothing. -- -- The CancellativeMonoid subclass does not add any operation but -- it provides the additional guarantee that <> can always -- be undone with </>. Thus Sum is a -- CancellativeMonoid but Product is not because -- (0*n)/0 is not defined. -- -- The GCDMonoid subclass adds the gcd operation which -- takes two monoidal arguments and finds their greatest common divisor, -- or (more generally) the greatest monoid that can be extracted with the -- </> operation from both. -- -- All monoid subclasses listed above are for Abelian, i.e., -- commutative or symmetric monoids. Since most practical monoids in -- Haskell are not Abelian, each of the these classes has two symmetric -- superclasses: -- -- module Data.Monoid.Cancellative -- | Class of all Abelian ({i.e.}, commutative) monoids that satisfy the -- commutativity property: -- --
--   a <> b == b <> a
--   
class Monoid m => CommutativeMonoid m -- | Class of Abelian monoids with a partial inverse for the Monoid -- <> operation. The inverse operation </> must -- satisfy the following laws: -- --
--   maybe a (b <>) (a </> b) == a
--   maybe a (<> b) (a </> b) == a
--   
class (CommutativeMonoid m, LeftReductiveMonoid m, RightReductiveMonoid m) => ReductiveMonoid m () :: ReductiveMonoid m => m -> m -> Maybe m -- | Subclass of ReductiveMonoid where </> is a -- complete inverse of the Monoid <> operation. The class -- instances must satisfy the following additional laws: -- --
--   (a <> b) </> a == Just b
--   (a <> b) </> b == Just a
--   
class (LeftCancellativeMonoid m, RightCancellativeMonoid m, ReductiveMonoid m) => CancellativeMonoid m -- | Class of Abelian monoids that allow the greatest common denominator to -- be found for any two given values. The operations must satisfy the -- following laws: -- --
--   gcd a b == commonPrefix a b == commonSuffix a b
--   Just a' = a </> p && Just b' = b </> p
--      where p = gcd a b
--   
-- -- If a GCDMonoid happens to also be a CancellativeMonoid, -- it should additionally satisfy the following laws: -- --
--   gcd (a <> b) (a <> c) == a <> gcd b c
--   gcd (a <> c) (b <> c) == gcd a b <> c
--   
class (ReductiveMonoid m, LeftGCDMonoid m, RightGCDMonoid m) => GCDMonoid m gcd :: GCDMonoid m => m -> m -> m -- | Class of monoids with a left inverse of mappend, satisfying the -- following law: -- --
--   isPrefixOf a b == isJust (stripPrefix a b)
--   maybe b (a <>) (stripPrefix a b) == b
--   a `isPrefixOf` (a <> b)
--   
-- -- | Every instance definition has to implement at least the -- stripPrefix method. Its complexity should be no worse than -- linear in the length of the prefix argument. class Monoid m => LeftReductiveMonoid m where isPrefixOf a b = isJust (stripPrefix a b) isPrefixOf :: LeftReductiveMonoid m => m -> m -> Bool stripPrefix :: LeftReductiveMonoid m => m -> m -> Maybe m -- | Class of monoids with a right inverse of mappend, satisfying -- the following law: -- --
--   isSuffixOf a b == isJust (stripSuffix a b)
--   maybe b (<> a) (stripSuffix a b) == b
--   b `isSuffixOf` (a <> b)
--   
-- -- | Every instance definition has to implement at least the -- stripSuffix method. Its complexity should be no worse than -- linear in the length of the suffix argument. class Monoid m => RightReductiveMonoid m where isSuffixOf a b = isJust (stripSuffix a b) isSuffixOf :: RightReductiveMonoid m => m -> m -> Bool stripSuffix :: RightReductiveMonoid m => m -> m -> Maybe m -- | Subclass of LeftReductiveMonoid where stripPrefix is a -- complete inverse of <>, satisfying the following -- additional law: -- --
--   stripPrefix a (a <> b) == Just b
--   
class LeftReductiveMonoid m => LeftCancellativeMonoid m -- | Subclass of LeftReductiveMonoid where stripPrefix is a -- complete inverse of <>, satisfying the following -- additional law: -- --
--   stripSuffix b (a <> b) == Just a
--   
class RightReductiveMonoid m => RightCancellativeMonoid m -- | Class of monoids capable of finding the equivalent of greatest common -- divisor on the left side of two monoidal values. The methods' -- complexity should be no worse than linear in the length of the common -- prefix. The following laws must be respected: -- --
--   stripCommonPrefix a b == (p, a', b')
--      where p = commonPrefix a b
--            Just a' = stripPrefix p a
--            Just b' = stripPrefix p b
--   p == commonPrefix a b && p <> a' == a && p <> b' == b
--      where (p, a', b') = stripCommonPrefix a b
--   
class LeftReductiveMonoid m => LeftGCDMonoid m where commonPrefix x y = p where (p, _, _) = stripCommonPrefix x y stripCommonPrefix x y = (p, x', y') where p = commonPrefix x y Just x' = stripPrefix p x Just y' = stripPrefix p y commonPrefix :: LeftGCDMonoid m => m -> m -> m stripCommonPrefix :: LeftGCDMonoid m => m -> m -> (m, m, m) -- | Class of monoids capable of finding the equivalent of greatest common -- divisor on the right side of two monoidal values. The methods' -- complexity must be no worse than linear in the length of the common -- suffix. The following laws must be respected: -- --
--   stripCommonSuffix a b == (a', b', s)
--      where s = commonSuffix a b
--            Just a' = stripSuffix p a
--            Just b' = stripSuffix p b
--   s == commonSuffix a b && a' <> s == a && b' <> s == b
--      where (a', b', s) = stripCommonSuffix a b
--   
class RightReductiveMonoid m => RightGCDMonoid m where commonSuffix x y = s where (_, _, s) = stripCommonSuffix x y stripCommonSuffix x y = (x', y', s) where s = commonSuffix x y Just x' = stripSuffix s x Just y' = stripSuffix s y commonSuffix :: RightGCDMonoid m => m -> m -> m stripCommonSuffix :: RightGCDMonoid m => m -> m -> (m, m, m) instance Data.Monoid.Cancellative.CommutativeMonoid () instance Data.Monoid.Cancellative.ReductiveMonoid () instance Data.Monoid.Cancellative.CancellativeMonoid () instance Data.Monoid.Cancellative.GCDMonoid () instance Data.Monoid.Cancellative.LeftReductiveMonoid () instance Data.Monoid.Cancellative.RightReductiveMonoid () instance Data.Monoid.Cancellative.LeftCancellativeMonoid () instance Data.Monoid.Cancellative.RightCancellativeMonoid () instance Data.Monoid.Cancellative.LeftGCDMonoid () instance Data.Monoid.Cancellative.RightGCDMonoid () instance Data.Monoid.Cancellative.CommutativeMonoid a => Data.Monoid.Cancellative.CommutativeMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.ReductiveMonoid a => Data.Monoid.Cancellative.ReductiveMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.CancellativeMonoid a => Data.Monoid.Cancellative.CancellativeMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.GCDMonoid a => Data.Monoid.Cancellative.GCDMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.LeftReductiveMonoid a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.RightReductiveMonoid a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.LeftCancellativeMonoid a => Data.Monoid.Cancellative.RightCancellativeMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.RightCancellativeMonoid a => Data.Monoid.Cancellative.LeftCancellativeMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.LeftGCDMonoid a => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Dual a) instance Data.Monoid.Cancellative.RightGCDMonoid a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Dual a) instance GHC.Num.Num a => Data.Monoid.Cancellative.CommutativeMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.ReductiveMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.CancellativeMonoid (Data.Monoid.Sum a) instance (GHC.Real.Integral a, GHC.Classes.Ord a) => Data.Monoid.Cancellative.GCDMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.LeftCancellativeMonoid (Data.Monoid.Sum a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.RightCancellativeMonoid (Data.Monoid.Sum a) instance (GHC.Real.Integral a, GHC.Classes.Ord a) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Sum a) instance (GHC.Real.Integral a, GHC.Classes.Ord a) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Sum a) instance GHC.Num.Num a => Data.Monoid.Cancellative.CommutativeMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.ReductiveMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.GCDMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Product a) instance GHC.Real.Integral a => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Product a) instance (Data.Monoid.Cancellative.CommutativeMonoid a, Data.Monoid.Cancellative.CommutativeMonoid b) => Data.Monoid.Cancellative.CommutativeMonoid (a, b) instance (Data.Monoid.Cancellative.ReductiveMonoid a, Data.Monoid.Cancellative.ReductiveMonoid b) => Data.Monoid.Cancellative.ReductiveMonoid (a, b) instance (Data.Monoid.Cancellative.CancellativeMonoid a, Data.Monoid.Cancellative.CancellativeMonoid b) => Data.Monoid.Cancellative.CancellativeMonoid (a, b) instance (Data.Monoid.Cancellative.GCDMonoid a, Data.Monoid.Cancellative.GCDMonoid b) => Data.Monoid.Cancellative.GCDMonoid (a, b) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Cancellative.LeftReductiveMonoid b) => Data.Monoid.Cancellative.LeftReductiveMonoid (a, b) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Cancellative.RightReductiveMonoid b) => Data.Monoid.Cancellative.RightReductiveMonoid (a, b) instance (Data.Monoid.Cancellative.LeftCancellativeMonoid a, Data.Monoid.Cancellative.LeftCancellativeMonoid b) => Data.Monoid.Cancellative.LeftCancellativeMonoid (a, b) instance (Data.Monoid.Cancellative.RightCancellativeMonoid a, Data.Monoid.Cancellative.RightCancellativeMonoid b) => Data.Monoid.Cancellative.RightCancellativeMonoid (a, b) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Cancellative.LeftGCDMonoid b) => Data.Monoid.Cancellative.LeftGCDMonoid (a, b) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Cancellative.RightGCDMonoid b) => Data.Monoid.Cancellative.RightGCDMonoid (a, b) instance (Data.Monoid.Cancellative.CommutativeMonoid a, Data.Monoid.Cancellative.CommutativeMonoid b, Data.Monoid.Cancellative.CommutativeMonoid c) => Data.Monoid.Cancellative.CommutativeMonoid (a, b, c) instance (Data.Monoid.Cancellative.ReductiveMonoid a, Data.Monoid.Cancellative.ReductiveMonoid b, Data.Monoid.Cancellative.ReductiveMonoid c) => Data.Monoid.Cancellative.ReductiveMonoid (a, b, c) instance (Data.Monoid.Cancellative.CancellativeMonoid a, Data.Monoid.Cancellative.CancellativeMonoid b, Data.Monoid.Cancellative.CancellativeMonoid c) => Data.Monoid.Cancellative.CancellativeMonoid (a, b, c) instance (Data.Monoid.Cancellative.GCDMonoid a, Data.Monoid.Cancellative.GCDMonoid b, Data.Monoid.Cancellative.GCDMonoid c) => Data.Monoid.Cancellative.GCDMonoid (a, b, c) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Cancellative.LeftReductiveMonoid b, Data.Monoid.Cancellative.LeftReductiveMonoid c) => Data.Monoid.Cancellative.LeftReductiveMonoid (a, b, c) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Cancellative.RightReductiveMonoid b, Data.Monoid.Cancellative.RightReductiveMonoid c) => Data.Monoid.Cancellative.RightReductiveMonoid (a, b, c) instance (Data.Monoid.Cancellative.LeftCancellativeMonoid a, Data.Monoid.Cancellative.LeftCancellativeMonoid b, Data.Monoid.Cancellative.LeftCancellativeMonoid c) => Data.Monoid.Cancellative.LeftCancellativeMonoid (a, b, c) instance (Data.Monoid.Cancellative.RightCancellativeMonoid a, Data.Monoid.Cancellative.RightCancellativeMonoid b, Data.Monoid.Cancellative.RightCancellativeMonoid c) => Data.Monoid.Cancellative.RightCancellativeMonoid (a, b, c) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Cancellative.LeftGCDMonoid b, Data.Monoid.Cancellative.LeftGCDMonoid c) => Data.Monoid.Cancellative.LeftGCDMonoid (a, b, c) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Cancellative.RightGCDMonoid b, Data.Monoid.Cancellative.RightGCDMonoid c) => Data.Monoid.Cancellative.RightGCDMonoid (a, b, c) instance (Data.Monoid.Cancellative.CommutativeMonoid a, Data.Monoid.Cancellative.CommutativeMonoid b, Data.Monoid.Cancellative.CommutativeMonoid c, Data.Monoid.Cancellative.CommutativeMonoid d) => Data.Monoid.Cancellative.CommutativeMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.ReductiveMonoid a, Data.Monoid.Cancellative.ReductiveMonoid b, Data.Monoid.Cancellative.ReductiveMonoid c, Data.Monoid.Cancellative.ReductiveMonoid d) => Data.Monoid.Cancellative.ReductiveMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.CancellativeMonoid a, Data.Monoid.Cancellative.CancellativeMonoid b, Data.Monoid.Cancellative.CancellativeMonoid c, Data.Monoid.Cancellative.CancellativeMonoid d) => Data.Monoid.Cancellative.CancellativeMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.GCDMonoid a, Data.Monoid.Cancellative.GCDMonoid b, Data.Monoid.Cancellative.GCDMonoid c, Data.Monoid.Cancellative.GCDMonoid d) => Data.Monoid.Cancellative.GCDMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Cancellative.LeftReductiveMonoid b, Data.Monoid.Cancellative.LeftReductiveMonoid c, Data.Monoid.Cancellative.LeftReductiveMonoid d) => Data.Monoid.Cancellative.LeftReductiveMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Cancellative.RightReductiveMonoid b, Data.Monoid.Cancellative.RightReductiveMonoid c, Data.Monoid.Cancellative.RightReductiveMonoid d) => Data.Monoid.Cancellative.RightReductiveMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.LeftCancellativeMonoid a, Data.Monoid.Cancellative.LeftCancellativeMonoid b, Data.Monoid.Cancellative.LeftCancellativeMonoid c, Data.Monoid.Cancellative.LeftCancellativeMonoid d) => Data.Monoid.Cancellative.LeftCancellativeMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.RightCancellativeMonoid a, Data.Monoid.Cancellative.RightCancellativeMonoid b, Data.Monoid.Cancellative.RightCancellativeMonoid c, Data.Monoid.Cancellative.RightCancellativeMonoid d) => Data.Monoid.Cancellative.RightCancellativeMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Cancellative.LeftGCDMonoid b, Data.Monoid.Cancellative.LeftGCDMonoid c, Data.Monoid.Cancellative.LeftGCDMonoid d) => Data.Monoid.Cancellative.LeftGCDMonoid (a, b, c, d) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Cancellative.RightGCDMonoid b, Data.Monoid.Cancellative.RightGCDMonoid c, Data.Monoid.Cancellative.RightGCDMonoid d) => Data.Monoid.Cancellative.RightGCDMonoid (a, b, c, d) instance Data.Monoid.Cancellative.LeftReductiveMonoid x => Data.Monoid.Cancellative.LeftReductiveMonoid (GHC.Base.Maybe x) instance Data.Monoid.Cancellative.LeftGCDMonoid x => Data.Monoid.Cancellative.LeftGCDMonoid (GHC.Base.Maybe x) instance Data.Monoid.Cancellative.RightReductiveMonoid x => Data.Monoid.Cancellative.RightReductiveMonoid (GHC.Base.Maybe x) instance Data.Monoid.Cancellative.RightGCDMonoid x => Data.Monoid.Cancellative.RightGCDMonoid (GHC.Base.Maybe x) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.CommutativeMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.ReductiveMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.RightGCDMonoid (Data.Set.Base.Set a) instance GHC.Classes.Ord a => Data.Monoid.Cancellative.GCDMonoid (Data.Set.Base.Set a) instance Data.Monoid.Cancellative.CommutativeMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.RightReductiveMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.ReductiveMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.LeftGCDMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.RightGCDMonoid Data.IntSet.Base.IntSet instance Data.Monoid.Cancellative.GCDMonoid Data.IntSet.Base.IntSet instance GHC.Classes.Ord k => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Map.Base.Map k a) instance (GHC.Classes.Ord k, GHC.Classes.Eq a) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Map.Base.Map k a) instance Data.Monoid.Cancellative.LeftReductiveMonoid (Data.IntMap.Base.IntMap a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.IntMap.Base.IntMap a) instance GHC.Classes.Eq x => Data.Monoid.Cancellative.LeftReductiveMonoid [x] instance GHC.Classes.Eq x => Data.Monoid.Cancellative.LeftCancellativeMonoid [x] instance GHC.Classes.Eq x => Data.Monoid.Cancellative.LeftGCDMonoid [x] instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftCancellativeMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightCancellativeMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightGCDMonoid (Data.Sequence.Seq a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Vector.Vector a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Vector.Vector a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftCancellativeMonoid (Data.Vector.Vector a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightCancellativeMonoid (Data.Vector.Vector a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Vector.Vector a) instance GHC.Classes.Eq a => Data.Monoid.Cancellative.RightGCDMonoid (Data.Vector.Vector a) instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.RightReductiveMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.LeftCancellativeMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.RightCancellativeMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.LeftGCDMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.RightGCDMonoid Data.ByteString.Internal.ByteString instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.RightReductiveMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.LeftCancellativeMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.RightCancellativeMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.LeftGCDMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.RightGCDMonoid Data.ByteString.Lazy.Internal.ByteString instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.Text.Internal.Text instance Data.Monoid.Cancellative.RightReductiveMonoid Data.Text.Internal.Text instance Data.Monoid.Cancellative.LeftCancellativeMonoid Data.Text.Internal.Text instance Data.Monoid.Cancellative.RightCancellativeMonoid Data.Text.Internal.Text instance Data.Monoid.Cancellative.LeftGCDMonoid Data.Text.Internal.Text instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Cancellative.RightReductiveMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Cancellative.LeftCancellativeMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Cancellative.RightCancellativeMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Cancellative.LeftGCDMonoid Data.Text.Internal.Lazy.Text -- | This module defines the TextualMonoid class and several of its -- instances. module Data.Monoid.Textual -- | The TextualMonoid class is an extension of -- FactorialMonoid specialized for monoids that can contain -- characters. Its methods are generally equivalent to their namesake -- functions from Data.List and Data.Text, and they satisfy -- the following laws: -- --
--   unfoldr splitCharacterPrefix . fromString == id
--   splitCharacterPrefix . primePrefix == fmap (\(c, t)-> (c, mempty)) . splitCharacterPrefix
--   
--   map f . fromString == fromString . List.map f
--   concatMap (fromString . f) . fromString == fromString . List.concatMap f
--   
--   foldl  ft fc a . fromString == List.foldl  fc a
--   foldr  ft fc a . fromString == List.foldr  fc a
--   foldl' ft fc a . fromString == List.foldl' fc a
--   
--   scanl f c . fromString == fromString . List.scanl f c
--   scanr f c . fromString == fromString . List.scanr f c
--   mapAccumL f a . fromString == fmap fromString . List.mapAccumL f a
--   mapAccumL f a . fromString == fmap fromString . List.mapAccumL f a
--   
--   takeWhile pt pc . fromString == fromString . takeWhile pc
--   dropWhile pt pc . fromString == fromString . dropWhile pc
--   
--   mconcat . intersperse (singleton c) . split (== c) == id
--   find p . fromString == List.find p
--   elem c . fromString == List.elem c
--   
-- -- A TextualMonoid may contain non-character data insterspersed -- between its characters. Every class method that returns a modified -- TextualMonoid instance generally preserves this non-character -- data. Methods like foldr can access both the non-character and -- character data and expect two arguments for the two purposes. For each -- of these methods there is also a simplified version with underscore in -- name (like foldr_) that ignores the non-character data. -- -- All of the following expressions are identities: -- --
--   map id
--   concatMap singleton
--   foldl  (<>) (\a c-> a <> singleton c) mempty
--   foldr  (<>) ((<>) . singleton) mempty
--   foldl' (<>) (\a c-> a <> singleton c) mempty
--   scanl1 (const id)
--   scanr1 const
--   uncurry (mapAccumL (,))
--   uncurry (mapAccumR (,))
--   takeWhile (const True) (const True)
--   dropWhile (const False) (const False)
--   toString undefined . fromString
--   
class (IsString t, LeftReductiveMonoid t, LeftGCDMonoid t, FactorialMonoid t) => TextualMonoid t where fromText = fromString . unpack singleton = fromString . (: []) characterPrefix = fmap fst . splitCharacterPrefix map f = concatMap (singleton . f) concatMap f = foldr mappend (mappend . f) mempty toString f = foldr (mappend . f) (:) [] all p = foldr (const id) ((&&) . p) True any p = foldr (const id) ((||) . p) False foldl ft fc = foldl (\ a prime -> maybe (ft a prime) (fc a) (characterPrefix prime)) foldr ft fc = foldr (\ prime -> maybe (ft prime) fc (characterPrefix prime)) foldl' ft fc = foldl' (\ a prime -> maybe (ft a prime) (fc a) (characterPrefix prime)) foldl_ = foldl const foldr_ = foldr (const id) foldl_' = foldl' const scanl f c = mappend (singleton c) . fst . foldl foldlOther (foldlChars f) (mempty, c) scanl1 f t = case (splitPrimePrefix t, splitCharacterPrefix t) of { (Nothing, _) -> t (Just (prefix, suffix), Nothing) -> mappend prefix (scanl1 f suffix) (Just _, Just (c, suffix)) -> scanl f c suffix } scanr f c = fst . foldr foldrOther (foldrChars f) (singleton c, c) scanr1 f = fst . foldr foldrOther fc (mempty, Nothing) where fc c (t, Nothing) = (mappend (singleton c) t, Just c) fc c1 (t, Just c2) = (mappend (singleton c') t, Just c') where c' = f c1 c2 mapAccumL f a0 = foldl ft fc (a0, mempty) where ft (a, t1) t2 = (a, mappend t1 t2) fc (a, t) c = (a', mappend t (singleton c')) where (a', c') = f a c mapAccumR f a0 = foldr ft fc (a0, mempty) where ft t1 (a, t2) = (a, mappend t1 t2) fc c (a, t) = (a', mappend (singleton c') t) where (a', c') = f a c takeWhile pt pc = fst . span pt pc dropWhile pt pc = snd . span pt pc span pt pc = span (\ prime -> maybe (pt prime) pc (characterPrefix prime)) break pt pc = break (\ prime -> maybe (pt prime) pc (characterPrefix prime)) spanMaybe s0 ft fc t0 = spanAfter id s0 t0 where spanAfter g s t = case splitPrimePrefix t of { Just (prime, rest) | Just s' <- maybe (ft s prime) (fc s) (characterPrefix prime) -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, t, s) Nothing -> (t0, t, s) } spanMaybe' s0 ft fc t0 = spanAfter id s0 t0 where spanAfter g s t = seq s $ case splitPrimePrefix t of { Just (prime, rest) | Just s' <- maybe (ft s prime) (fc s) (characterPrefix prime) -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, t, s) Nothing -> (t0, t, s) } takeWhile_ = takeWhile . const dropWhile_ = dropWhile . const break_ = break . const span_ = span . const spanMaybe_ s = spanMaybe s (const . Just) spanMaybe_' s = spanMaybe' s (const . Just) split p m = prefix : splitRest where (prefix, rest) = break (const False) p m splitRest = case splitCharacterPrefix rest of { Nothing -> [] Just (_, tl) -> split p tl } find p = foldr (const id) (\ c r -> if p c then Just c else r) Nothing elem c = any (== c) -- | Contructs a new data type instance Like fromString, but from a -- Text input instead of String. -- --
--   fromText == fromString . Text.unpack
--   
fromText :: TextualMonoid t => Text -> t -- | Creates a prime monoid containing a single character. -- --
--   singleton c == fromString [c]
--   
singleton :: TextualMonoid t => Char -> t -- | Specialized version of splitPrimePrefix. Every prime factor of -- a Textual monoid must consist of a single character or no -- character at all. splitCharacterPrefix :: TextualMonoid t => t -> Maybe (Char, t) -- | Extracts a single character that prefixes the monoid, if the monoid -- begins with a character. Otherwise returns Nothing. -- --
--   characterPrefix == fmap fst . splitCharacterPrefix
--   
characterPrefix :: TextualMonoid t => t -> Maybe Char -- | Equivalent to map from Data.List with a Char -> -- Char function. Preserves all non-character data. -- --
--   map f == concatMap (singleton . f)
--   
map :: TextualMonoid t => (Char -> Char) -> t -> t -- | Equivalent to concatMap from Data.List with a Char -- -> String function. Preserves all non-character data. concatMap :: TextualMonoid t => (Char -> t) -> t -> t -- | Returns the list of characters the monoid contains, after having the -- argument function convert all its non-character factors into -- characters. toString :: TextualMonoid t => (t -> String) -> t -> String -- | Equivalent to any from Data.List. Ignores all -- non-character data. any :: TextualMonoid t => (Char -> Bool) -> t -> Bool -- | Equivalent to all from Data.List. Ignores all -- non-character data. all :: TextualMonoid t => (Char -> Bool) -> t -> Bool -- | The first argument folds over the non-character prime factors, the -- second over characters. Otherwise equivalent to foldl from -- Data.List. foldl :: TextualMonoid t => (a -> t -> a) -> (a -> Char -> a) -> a -> t -> a -- | Strict version of foldl. foldl' :: TextualMonoid t => (a -> t -> a) -> (a -> Char -> a) -> a -> t -> a -- | The first argument folds over the non-character prime factors, the -- second over characters. Otherwise equivalent to 'List.foldl\'' from -- Data.List. foldr :: TextualMonoid t => (t -> a -> a) -> (Char -> a -> a) -> a -> t -> a -- | Equivalent to scanl from Data.List when applied to a -- String, but preserves all non-character data. scanl :: TextualMonoid t => (Char -> Char -> Char) -> Char -> t -> t -- | Equivalent to scanl1 from Data.List when applied to a -- String, but preserves all non-character data. -- --
--   scanl f c == scanl1 f . (singleton c <>)
--   
scanl1 :: TextualMonoid t => (Char -> Char -> Char) -> t -> t -- | Equivalent to scanr from Data.List when applied to a -- String, but preserves all non-character data. scanr :: TextualMonoid t => (Char -> Char -> Char) -> Char -> t -> t -- | Equivalent to scanr1 from Data.List when applied to a -- String, but preserves all non-character data. -- --
--   scanr f c == scanr1 f . (<> singleton c)
--   
scanr1 :: TextualMonoid t => (Char -> Char -> Char) -> t -> t -- | Equivalent to mapAccumL from Data.List when applied to a -- String, but preserves all non-character data. mapAccumL :: TextualMonoid t => (a -> Char -> (a, Char)) -> a -> t -> (a, t) -- | Equivalent to mapAccumR from Data.List when applied to a -- String, but preserves all non-character data. mapAccumR :: TextualMonoid t => (a -> Char -> (a, Char)) -> a -> t -> (a, t) -- | The first predicate tests the non-character data, the second one the -- characters. Otherwise equivalent to takeWhile from -- Data.List when applied to a String. takeWhile :: TextualMonoid t => (t -> Bool) -> (Char -> Bool) -> t -> t -- | The first predicate tests the non-character data, the second one the -- characters. Otherwise equivalent to dropWhile from -- Data.List when applied to a String. dropWhile :: TextualMonoid t => (t -> Bool) -> (Char -> Bool) -> t -> t -- | 'break pt pc' is equivalent to |span (not . pt) (not . pc)|. break :: TextualMonoid t => (t -> Bool) -> (Char -> Bool) -> t -> (t, t) -- | 'span pt pc t' is equivalent to |(takeWhile pt pc t, dropWhile pt pc -- t)|. span :: TextualMonoid t => (t -> Bool) -> (Char -> Bool) -> t -> (t, t) -- | A stateful variant of span, threading the result of the test -- function as long as it returns Just. spanMaybe :: TextualMonoid t => s -> (s -> t -> Maybe s) -> (s -> Char -> Maybe s) -> t -> (t, t, s) -- | Strict version of spanMaybe. spanMaybe' :: TextualMonoid t => s -> (s -> t -> Maybe s) -> (s -> Char -> Maybe s) -> t -> (t, t, s) -- | Splits the monoid into components delimited by character separators -- satisfying the given predicate. The characters satisfying the -- predicate are not a part of the result. -- --
--   split p == Factorial.split (maybe False p . characterPrefix)
--   
split :: TextualMonoid t => (Char -> Bool) -> t -> [t] -- | Like find from Data.List when applied to a -- String. Ignores non-character data. find :: TextualMonoid t => (Char -> Bool) -> t -> Maybe Char -- | Like elem from Data.List when applied to a -- String. Ignores non-character data. elem :: TextualMonoid t => Char -> t -> Bool -- |
--   foldl_ = foldl const
--   
foldl_ :: TextualMonoid t => (a -> Char -> a) -> a -> t -> a foldl_' :: TextualMonoid t => (a -> Char -> a) -> a -> t -> a foldr_ :: TextualMonoid t => (Char -> a -> a) -> a -> t -> a -- |
--   takeWhile_ = takeWhile . const
--   
takeWhile_ :: TextualMonoid t => Bool -> (Char -> Bool) -> t -> t -- |
--   dropWhile_ = dropWhile . const
--   
dropWhile_ :: TextualMonoid t => Bool -> (Char -> Bool) -> t -> t -- |
--   break_ = break . const
--   
break_ :: TextualMonoid t => Bool -> (Char -> Bool) -> t -> (t, t) -- |
--   span_ = span . const
--   
span_ :: TextualMonoid t => Bool -> (Char -> Bool) -> t -> (t, t) -- |
--   spanMaybe_ s = spanMaybe s (const . Just)
--   
spanMaybe_ :: TextualMonoid t => s -> (s -> Char -> Maybe s) -> t -> (t, t, s) spanMaybe_' :: TextualMonoid t => s -> (s -> Char -> Maybe s) -> t -> (t, t, s) instance Data.Monoid.Textual.TextualMonoid GHC.Base.String instance Data.Monoid.Textual.TextualMonoid Data.Text.Internal.Text instance Data.Monoid.Textual.TextualMonoid Data.Text.Internal.Lazy.Text instance Data.Monoid.Textual.TextualMonoid (Data.Sequence.Seq GHC.Types.Char) instance Data.String.IsString (Data.Vector.Vector GHC.Types.Char) instance Data.Monoid.Textual.TextualMonoid (Data.Vector.Vector GHC.Types.Char) -- | This module defines the ByteStringUTF8 newtype wrapper around -- ByteString, together with its TextualMonoid instance. -- The FactorialMonoid instance of a wrapped ByteStringUTF8 -- value differs from the original ByteString: the prime -- factors of the original value are its bytes, and for the -- wrapped value the prime factors are its valid UTF8 byte -- sequences. The following example session demonstrates the -- relationship: -- --
--   > let utf8@(ByteStringUTF8 bs) = fromString "E=mc\xb2"
--   > bs
--   "E=mc\194\178"
--   > factors bs
--   ["E","=","m","c","\194","\178"]
--   > utf8
--   "E=mc²"
--   > factors utf8
--   ["E","=","m","c","²"]
--   
-- -- The TextualMonoid instance follows the same logic, but it also -- decodes all valid UTF8 sequences into characters. Any invalid UTF8 -- byte sequence from the original ByteString is preserved as a -- single prime factor: -- --
--   > let utf8'@(ByteStringUTF8 bs') = ByteStringUTF8 (Data.ByteString.map pred bs)
--   > bs'
--   "D<lb\193\177"
--   > factors bs'
--   ["D","<","l","b","\193","\177"]
--   > utf8'
--   "D<lb\[193,177]"
--   > factors utf8'
--   ["D","<","l","b","\[193,177]"]
--   
module Data.Monoid.Instances.ByteString.UTF8 newtype ByteStringUTF8 ByteStringUTF8 :: ByteString -> ByteStringUTF8 -- | Takes a raw ByteString chunk and returns a pair of -- ByteStringUTF8 decoding the prefix of the chunk and the -- remaining suffix that is either null or contains the incomplete last -- character of the chunk. decode :: ByteString -> (ByteStringUTF8, ByteString) instance GHC.Classes.Ord Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance GHC.Classes.Eq Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance GHC.Base.Monoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Null.MonoidNull Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Cancellative.LeftReductiveMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Cancellative.LeftCancellativeMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Cancellative.LeftGCDMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance GHC.Show.Show Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.String.IsString Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Null.PositiveMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Factorial.FactorialMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 instance Data.Monoid.Textual.TextualMonoid Data.Monoid.Instances.ByteString.UTF8.ByteStringUTF8 -- | This module defines the monoid transformer data type Concat. module Data.Monoid.Instances.Concat -- | Concat is a transparent monoid transformer. The -- behaviour of the Concat a instances of monoid -- subclasses is identical to the behaviour of their a -- instances, up to the pure isomorphism. -- -- The only purpose of Concat then is to change the performance -- characteristics of various operations. Most importantly, injecting a -- monoid into Concat has the effect of making mappend a -- constant-time operation. The splitPrimePrefix and -- splitPrimeSuffix operations are amortized to constant time, -- provided that only one or the other is used. Using both operations -- alternately will trigger the worst-case behaviour of O(n). data Concat a -- | Deprecated: Concat is not wrapping Seq any more, don't use -- concatenate nor extract. concatenate :: PositiveMonoid a => Seq a -> Concat a -- | Deprecated: Concat is not wrapping Seq any more, don't use -- concatenate nor extract. extract :: Concat a -> Seq a force :: Monoid a => Concat a -> a instance GHC.Show.Show a => GHC.Show.Show (Data.Monoid.Instances.Concat.Concat a) instance (GHC.Classes.Eq a, GHC.Base.Monoid a) => GHC.Classes.Eq (Data.Monoid.Instances.Concat.Concat a) instance (GHC.Classes.Ord a, GHC.Base.Monoid a) => GHC.Classes.Ord (Data.Monoid.Instances.Concat.Concat a) instance GHC.Base.Functor Data.Monoid.Instances.Concat.Concat instance GHC.Base.Applicative Data.Monoid.Instances.Concat.Concat instance Data.Foldable.Foldable Data.Monoid.Instances.Concat.Concat instance Data.Monoid.Null.PositiveMonoid a => GHC.Base.Monoid (Data.Monoid.Instances.Concat.Concat a) instance Data.Monoid.Null.PositiveMonoid a => Data.Monoid.Null.MonoidNull (Data.Monoid.Instances.Concat.Concat a) instance Data.Monoid.Null.PositiveMonoid a => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Null.PositiveMonoid a) => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Instances.Concat.Concat a) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Null.PositiveMonoid a) => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Instances.Concat.Concat a) instance Data.String.IsString a => Data.String.IsString (Data.Monoid.Instances.Concat.Concat a) instance (GHC.Classes.Eq a, Data.Monoid.Textual.TextualMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Textual.TextualMonoid (Data.Monoid.Instances.Concat.Concat a) -- | This module defines the monoid transformer data type Measured. module Data.Monoid.Instances.Measured -- | Measured a is a wrapper around the -- FactorialMonoid a that memoizes the monoid's -- length so it becomes a constant-time operation. The parameter -- is restricted to the StableFactorialMonoid class, which -- guarantees that length (a <> b) == length a + -- length b. data Measured a -- | Create a new Measured value. measure :: FactorialMonoid a => a -> Measured a extract :: Measured a -> a instance GHC.Show.Show a => GHC.Show.Show (Data.Monoid.Instances.Measured.Measured a) instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Monoid.Instances.Measured.Measured a) instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Monoid.Instances.Measured.Measured a) instance Data.Monoid.Factorial.StableFactorialMonoid a => GHC.Base.Monoid (Data.Monoid.Instances.Measured.Measured a) instance Data.Monoid.Factorial.StableFactorialMonoid a => Data.Monoid.Null.MonoidNull (Data.Monoid.Instances.Measured.Measured a) instance Data.Monoid.Factorial.StableFactorialMonoid a => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Instances.Measured.Measured a) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Instances.Measured.Measured a) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Instances.Measured.Measured a) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Instances.Measured.Measured a) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Instances.Measured.Measured a) instance Data.Monoid.Factorial.StableFactorialMonoid a => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Instances.Measured.Measured a) instance Data.Monoid.Factorial.StableFactorialMonoid a => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Instances.Measured.Measured a) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.String.IsString a) => Data.String.IsString (Data.Monoid.Instances.Measured.Measured a) instance (GHC.Classes.Eq a, Data.Monoid.Textual.TextualMonoid a, Data.Monoid.Factorial.StableFactorialMonoid a) => Data.Monoid.Textual.TextualMonoid (Data.Monoid.Instances.Measured.Measured a) -- | This module defines two monoid transformer data types, -- OffsetPositioned and LinePositioned. Both data types add -- a notion of the current position to their base monoid. In case of -- OffsetPositioned, the current position is a simple integer -- offset from the beginning of the monoid, and it can be applied to any -- StableFactorialMonoid. The base monoid of LinePositioned -- must be a TextualMonoid, but for the price it will keep track -- of the current line and column numbers as well. -- -- All positions are zero-based: -- --
--   > let p = pure "abcd\nefgh\nijkl\nmnop\n" :: LinePositioned String
--   > p
--   Line 0, column 0: "abcd\nefgh\nijkl\nmnop\n"
--   > Data.Monoid.Factorial.drop 13 p
--   Line 2, column 3: "l\nmnop\n"
--   
module Data.Monoid.Instances.Positioned data OffsetPositioned m data LinePositioned m extract :: Positioned p => p a -> a position :: Positioned p => p a -> Int -- | the current line line :: LinePositioned m -> Int -- | the current column column :: LinePositioned m -> Int instance GHC.Base.Functor Data.Monoid.Instances.Positioned.OffsetPositioned instance GHC.Base.Functor Data.Monoid.Instances.Positioned.LinePositioned instance GHC.Base.Applicative Data.Monoid.Instances.Positioned.OffsetPositioned instance GHC.Base.Applicative Data.Monoid.Instances.Positioned.LinePositioned instance Data.Monoid.Instances.Positioned.Positioned Data.Monoid.Instances.Positioned.OffsetPositioned instance Data.Monoid.Instances.Positioned.Positioned Data.Monoid.Instances.Positioned.LinePositioned instance GHC.Classes.Eq m => GHC.Classes.Eq (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance GHC.Classes.Eq m => GHC.Classes.Eq (Data.Monoid.Instances.Positioned.LinePositioned m) instance GHC.Classes.Ord m => GHC.Classes.Ord (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance GHC.Classes.Ord m => GHC.Classes.Ord (Data.Monoid.Instances.Positioned.LinePositioned m) instance GHC.Show.Show m => GHC.Show.Show (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance GHC.Show.Show m => GHC.Show.Show (Data.Monoid.Instances.Positioned.LinePositioned m) instance Data.Monoid.Factorial.StableFactorialMonoid m => GHC.Base.Monoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => GHC.Base.Monoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Null.MonoidNull m) => Data.Monoid.Null.MonoidNull (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m, Data.Monoid.Null.MonoidNull m) => Data.Monoid.Null.MonoidNull (Data.Monoid.Instances.Positioned.LinePositioned m) instance Data.Monoid.Factorial.StableFactorialMonoid m => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Cancellative.LeftReductiveMonoid m) => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m, Data.Monoid.Cancellative.LeftReductiveMonoid m) => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Cancellative.LeftGCDMonoid m) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m, Data.Monoid.Cancellative.LeftGCDMonoid m) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Cancellative.RightReductiveMonoid m) => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m, Data.Monoid.Cancellative.RightReductiveMonoid m) => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Cancellative.RightGCDMonoid m) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m, Data.Monoid.Cancellative.RightGCDMonoid m) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance Data.Monoid.Factorial.StableFactorialMonoid m => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance Data.Monoid.Factorial.StableFactorialMonoid m => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) instance Data.String.IsString m => Data.String.IsString (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance Data.String.IsString m => Data.String.IsString (Data.Monoid.Instances.Positioned.LinePositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => Data.Monoid.Textual.TextualMonoid (Data.Monoid.Instances.Positioned.OffsetPositioned m) instance (Data.Monoid.Factorial.StableFactorialMonoid m, Data.Monoid.Textual.TextualMonoid m) => Data.Monoid.Textual.TextualMonoid (Data.Monoid.Instances.Positioned.LinePositioned m) -- | This module defines the monoid transformer data type Stateful. -- --
--   > let s = setState [4] $ pure "data" :: Stateful [Int] String
--   > s
--   Stateful ("data",[4])
--   > factors s
--   [Stateful ("d",[]),Stateful ("a",[]),Stateful ("t",[]),Stateful ("a",[]),Stateful ("",[4])]
--   
module Data.Monoid.Instances.Stateful -- | Stateful a b is a wrapper around the Monoid -- b that carries the state a along. The state type -- a must be a monoid as well if Stateful is to be of any -- use. In the FactorialMonoid and TextualMonoid class -- instances, the monoid b has the priority and the state -- a is left for the end. newtype Stateful a b Stateful :: (b, a) -> Stateful a b extract :: Stateful a b -> b state :: Stateful a b -> a setState :: a -> Stateful a b -> Stateful a b instance (GHC.Show.Show a, GHC.Show.Show b) => GHC.Show.Show (Data.Monoid.Instances.Stateful.Stateful a b) instance (GHC.Classes.Ord a, GHC.Classes.Ord b) => GHC.Classes.Ord (Data.Monoid.Instances.Stateful.Stateful a b) instance (GHC.Classes.Eq a, GHC.Classes.Eq b) => GHC.Classes.Eq (Data.Monoid.Instances.Stateful.Stateful a b) instance GHC.Base.Functor (Data.Monoid.Instances.Stateful.Stateful a) instance GHC.Base.Monoid a => GHC.Base.Applicative (Data.Monoid.Instances.Stateful.Stateful a) instance (GHC.Base.Monoid a, GHC.Base.Monoid b) => GHC.Base.Monoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Null.MonoidNull a, Data.Monoid.Null.MonoidNull b) => Data.Monoid.Null.MonoidNull (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Null.PositiveMonoid a, Data.Monoid.Null.PositiveMonoid b) => Data.Monoid.Null.PositiveMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Cancellative.LeftReductiveMonoid a, Data.Monoid.Cancellative.LeftReductiveMonoid b) => Data.Monoid.Cancellative.LeftReductiveMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Cancellative.RightReductiveMonoid a, Data.Monoid.Cancellative.RightReductiveMonoid b) => Data.Monoid.Cancellative.RightReductiveMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Cancellative.LeftGCDMonoid b) => Data.Monoid.Cancellative.LeftGCDMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Cancellative.RightGCDMonoid a, Data.Monoid.Cancellative.RightGCDMonoid b) => Data.Monoid.Cancellative.RightGCDMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Factorial.FactorialMonoid b) => Data.Monoid.Factorial.FactorialMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Factorial.StableFactorialMonoid a, Data.Monoid.Factorial.StableFactorialMonoid b) => Data.Monoid.Factorial.StableFactorialMonoid (Data.Monoid.Instances.Stateful.Stateful a b) instance (GHC.Base.Monoid a, Data.String.IsString b) => Data.String.IsString (Data.Monoid.Instances.Stateful.Stateful a b) instance (Data.Monoid.Cancellative.LeftGCDMonoid a, Data.Monoid.Factorial.FactorialMonoid a, Data.Monoid.Textual.TextualMonoid b) => Data.Monoid.Textual.TextualMonoid (Data.Monoid.Instances.Stateful.Stateful a b)