úÎ!qi‹‰      !"#$%&'()*+,- . / 0 1 2 3 4 5 6 7 8 9:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆSafe+,-;=>?AFPQSTUVmorphisms-functors ÈWhen providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: contramap identity "a identity * Composition of morphisms: contramap f . contramap g "a contramap (g . f)morphisms-functorsInfix version of morphisms-functorsPrefix version of morphisms-functors7Replace all locations in the output with the same valuemorphisms-functorsFlipped version of morphisms-functorsFill the input of evaluation444Safe+,-;=>?AFPQSTUV:morphisms-functors ¸When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: comap identity "a identity * Composition of morphisms: comap (f . g) "a comap f . comap gmorphisms-functorsInfix version of morphisms-functorsPrefix version of  morphisms-functors6Replace all locations in the input with the same value morphisms-functorsFlipped version of  morphisms-functors!Discards the result of evaluation    4 4 4Safe+,-;=>?AFPQSTUVa   0 000Safe+,-;=>?AFPQSTUV!jmorphisms-functors ÒWhen providing a new instance, you should ensure it satisfies the three laws: * Duplication interchange: comap (comap f) . duplicate "a duplicate . comap f * Extension interchange: extend f "a comap f . duplicatemorphisms-functorsInfix and flipped version of , the dual of >>=morphisms-functorsFlipped version of >>=, the dual of =<<morphisms-functorsPrefix and flipped version of , the dual of bindmorphisms-functors&Clone existing structure, the dual of join11Safe+,-;=>?AFPQSTUV(:morphisms-functors %Let f :: Distributive g => (a -> g b) ¾When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: distribute . distribute "a identity * Interchange collection: collect f "a distribute . comap fmorphisms-functorsInfix version of morphisms-functorsPrefix version of morphisms-functors The dual of sequenceSafe+,-;=>?AFPQSTUV/imorphisms-functors rWhen providing a new instance, you should ensure it satisfies the one law: * Interchange: t >>= f = join (f <$> t)morphisms-functorsInfix and flipped version of , the dual of =>>morphisms-functorsFlipped version of , the dual of <<=morphisms-functorsPrefix and flipped version of , the dual of extend morphisms-functors$Merge effects/contexts, the dual of  duplicate  11Safe+,-;=>?AFPQSTUV6c"morphisms-functors ÿWhen providing a new instance, you should ensure it satisfies the four laws: * Left adjunction identity: phi counit "a identity * Right adjunction identity: psi unit "a identity * Left adjunction interchange: phi f "a comap f . eta * Right adjunction interchange: psi f "a epsilon . comap f#morphisms-functorsLeft adjunction$morphisms-functorsRight adjunction!"#$%&"#$%&!Safe+,-;=>?AFPQSTUV@'morphisms-functors õWhen providing a new instance, you should ensure it satisfies the three laws: * Composition: (.) <$> u <*> v <*> w "a u <*> (v <*> w) * Left interchange: x <*> (f <$> y) "a (. f) <$> x <*> y * Right interchange: f <$> (x <*> y) "a (f .) <$> x <*> y(morphisms-functorsInfix version of ))morphisms-functorsPrefix version of (*morphisms-functors<Sequence actions, discarding the value of the first argument+morphisms-functors=Sequence actions, discarding the value of the second argument,morphisms-functorsRepeat an action indefinitely'()*+,'()*+,(4*4+4 Safe+,-;=>?AFPQSTUVEö-morphisms-functors ÐWhen providing a new instance, you should ensure it satisfies the two laws: * Associativity of <+>: (x <+> y) <+> z "a x <+> (y <+> z) * Left-distributes <$> over <+>: f <$> (x <+> y) "a (f <$> x) <+> (f <$> y).morphisms-functorsInfix version of //morphisms-functorsPrefix version of .-./-./.3 Safe+,-;=>?AFPQSTUVFß0101 Safe+,-;=>?AFPQSTUVG­2323 Safe+,-;=>?AFPQSTUVM±4morphisms-functors ]Let f :: (Pointable t, Bindable t) => t a -> b Let g :: (Pointable t, Bindable t) => t a -> b ÛWhen using this constraint, you should ensure it satisfies the three laws: * Left identity: extend extract "a identity * Right identity: extract . extend f "a f * Associativity: extend f . extend g "a extend (f . extend g)44 Safe+,-;=>?AFPQSTUVSá5morphisms-functors ÎWhen providing a new instance, you should ensure it satisfies the two laws: Identity morphisms: invmap identity identity = identity Composition of morphisms: invmap g j . invmap f h = invmap (g . f) (h . j)6morphisms-functorsInfix version of 77morphisms-functorsPrefix version of 68morphisms-functorsFlipped version of 6586758676484Safe+,-;=>?AFPQSTUVTå9:9:Safe+,-;=>?AFPQSTUV^;morphisms-functors gLet f :: (Applicative t, Applicative g) => t a -> u a Let p :: (Pointable t, Pointable g) => t a -> u a ÿ When providing a new instance, you should ensure it satisfies the four laws: * Naturality of traversing: g . traverse f "a traverse (g . f) * Naturality of sequencing: f . sequence = sequence . comap f * Preserving point: p (point x) "a point x * Preserving apply: f (x <*> y) "a f x <*> f y<morphisms-functorsInfix version of ==morphisms-functorsPrefix version of <>morphisms-functors The dual of  distribute;<>=;<>=Safe+,-;=>?AFPQSTUVd“?morphisms-functors ‡Let f :: (Pointable t, Bindable t) => a -> t a Let g :: (Pointable t, Bindable t) => a -> t a Let h :: (Pointable t, Bindable t) => t a ÌWhen using this constraint, you should ensure it satisfies the three laws: * Left identity: point a >>= f "a f a * Right identity: h >>= point "a h * Associativity: h >>= (\x -> f x >>= g) "a (h >>= f) >>= g??Safe+,-;=>?AFPQSTUVeY@AB@ABSafe+,-;=>?AFPQSTUVf/YZ[YZ[Safe+,-;=>?AFPQSTUVgjkljklSafe+,-;=>?AFPQSTUVgÛwxwxSafe+,-;=>?AFPQSTUVh©‚ƒ‚ƒSafe+,-;=>?AFPQSTUViw‡ˆˆ‡‰ !"#$%&'()*+,-./0123456789:;<=>?@ABC D E F G H I J K L M N OPQRSTUVWWXYZ[\]^_`abcdefghijklmnoopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹‹ŒŽ‘’“”••–—˜™š›/morphisms-functors-0.1.3-L7V035bvTTzE6N4uxvfyGPControl.Functor.ContravariantControl.Functor.CovariantControl.Functor.Composition&Control.Functor.Composition.Extendable(Control.Functor.Composition.Distributive$Control.Functor.Composition.Bindable#Control.Functor.Composition.AdjointControl.Functor.ApplicativeControl.Functor.AlternativeControl.Functor.ExclusiveControl.Functor.Extractable#Control.Functor.Composition.ComonadControl.Functor.InvariantControl.Functor.Pointable'Control.Functor.Composition.Traversable!Control.Functor.Composition.MonadControl.Functor.Basic.TTTControl.Functor.Basic.TTControl.Functor.Basic.TControl.Functor.Basic.IdentityControl.Functor.Basic.ConstantControl.Transformation.Natural Contravariant>$< contramap>$$<full Covariant<$>comap<$$>void%.%%.::.%:.:VariantCoContra Extendable=>><<=extend duplicate Distributive>>-collect distributeBindable>>==<<bindjoin-|Adjointphipsietaepsilon Applicative<*>apply*><*forever Alternative<+>alter Exclusive exclusive ExtractableextractComonad Invariant<$<invmap>$> Pointablepoint Traversable->>traversesequenceMonadTTTttt$fExtractableTTT$fPointableTTT$fExclusiveTTT$fAlternativeTTT$fApplicativeTTT$fCovariantTTT$fContravariantTTT$fContravariantTTT0$fContravariantTTT1$fContravariantTTT2$fCovariantTTT0$fCovariantTTT1$fCovariantTTT2$fCovariantTTT3$fCovariantTTT4$fCovariantTTT5$fContravariantTTT3$fContravariantTTT4$fContravariantTTT5$fContravariantTTT6$fCovariantTTT6$fAdjointTTTTTTTTtt$fExtractableTT $fPointableTT $fExclusiveTT$fAlternativeTT$fApplicativeTT$fContravariantTT $fCovariantTT$fCovariantTT0$fCovariantTT1$fContravariantTT0$fContravariantTT1$fContravariantTT2$fCovariantTT2 $fAdjointTTTTTt$fExtractableT $fPointableT $fExclusiveT$fAlternativeT$fApplicativeT $fCovariantT$fContravariantT$fContravariantT0 $fCovariantT0 $fAdjointTTIdentity$fAdjointIdentityIdentity$fExtendableIdentity$fBindableIdentity$fDistributiveIdentity$fTraversableIdentity$fExtractableIdentity$fPointableIdentity$fApplicativeIdentity$fCovariantIdentityConstant$fTraversableConstant$fContravariantConstant$fCovariantConstant~>Natural