úÎ!|siž        ! " # $ % & ' ( ) * + , - . / 0 1 23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œSafe+,-;=>?AFPQSTUVmorphisms-functors ÈWhen providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: contramap identity "a identity * Composition of morphisms: contramap f . contramap g "a contramap (g . f)morphisms-functorsInfix version of morphisms-functorsPrefix version of morphisms-functors7Replace all locations in the output with the same valuemorphisms-functorsFlipped version of morphisms-functorsFill the input of evaluation444Safe+,-;=>?AFPQSTUVKmorphisms-functors ¸When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: comap identity "a identity * Composition of morphisms: comap (f . g) "a comap f . comap gmorphisms-functorsInfix version of morphisms-functorsPrefix version of  morphisms-functors6Replace all locations in the input with the same value morphisms-functorsFlipped version of  morphisms-functors!Discards the result of evaluation    4 4 4Safe+,-;=>?AFPQSTUV@ morphisms-functors ÐWhen providing a new instance, you should ensure it satisfies the two laws: * Associativity of <+>: (x <+> y) <+> z "a x <+> (y <+> z) * Left-distributes <$> over <+>: f <$> (x <+> y) "a (f <$> x) <+> (f <$> y) morphisms-functorsInfix version of morphisms-functorsPrefix version of     3Safe+,-;=>?AFPQSTUV'Ùmorphisms-functors õWhen providing a new instance, you should ensure it satisfies the three laws: * Composition: (.) <$> u <*> v <*> w "a u <*> (v <*> w) * Left interchange: x <*> (f <$> y) "a (. f) <$> x <*> y * Right interchange: f <$> (x <*> y) "a (f .) <$> x <*> ymorphisms-functorsInfix version of morphisms-functorsPrefix version of morphisms-functors<Sequence actions, discarding the value of the first argumentmorphisms-functors=Sequence actions, discarding the value of the second argumentmorphisms-functorsRepeat an action indefinitely444Safe+,-;=>?AFPQSTUV)Safe+,-;=>?AFPQSTUV)ÎSafe+,-;=>?AFPQSTUV*œSafe+,-;=>?AFPQSTUV+j Safe+,-;=>?AFPQSTUV,8 Safe+,-;=>?AFPQSTUV2pmorphisms-functors ÎWhen providing a new instance, you should ensure it satisfies the two laws: Identity morphisms: invmap identity identity = identity Composition of morphisms: invmap g j . invmap f h = invmap (g . f) (h . j) morphisms-functorsInfix version of !!morphisms-functorsPrefix version of  "morphisms-functorsFlipped version of  " !" ! 4"4 Safe+,-;=>?AFPQSTUV3t#$%&$%&##0 Safe+,-;=>?AFPQSTUV<Å'morphisms-functors gLet f :: (Applicative t, Applicative g) => t a -> u a Let p :: (Pointable t, Pointable g) => t a -> u a ÿ When providing a new instance, you should ensure it satisfies the four laws: * Naturality of traversing: g . traverse f "a traverse (g . f) * Naturality of sequencing: f . sequence = sequence . comap f * Preserving point: p (point x) "a point x * Preserving apply: f (x <*> y) "a f x <*> f y(morphisms-functorsInfix version of ))morphisms-functorsPrefix version of (*morphisms-functors The dual of  distribute'()*'()* Safe+,-;=>?AFPQSTUVG&+morphisms-functors ÒWhen providing a new instance, you should ensure it satisfies the three laws: * Duplication interchange: comap (comap f) . duplicate "a duplicate . comap f * Extension interchange: extend f "a comap f . duplicate,morphisms-functorsInfix and flipped version of ., the dual of >>=-morphisms-functorsFlipped version of >>=, the dual of =<<.morphisms-functorsPrefix and flipped version of ,, the dual of bind/morphisms-functors&Clone existing structure, the dual of join0morphisms-functors#Right-to-left Cokleisli composition1morphisms-functors#Left-to-right Cokleisli composition+,.-01/+,.-01/,1-10111Safe+,-;=>?AFPQSTUVMž2morphisms-functors ]Let f :: (Pointable t, Bindable t) => t a -> b Let g :: (Pointable t, Bindable t) => t a -> b ÛWhen using this constraint, you should ensure it satisfies the three laws: * Left identity: extend extract "a identity * Right identity: extract . extend f "a f * Associativity: extend f . extend g "a extend (f . extend g)22Safe+,-;=>?AFPQSTUVT(3morphisms-functors %Let f :: Distributive g => (a -> g b) ¾When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: distribute . distribute "a identity * Interchange collection: collect f "a distribute . comap f4morphisms-functorsInfix version of 55morphisms-functorsPrefix version of 46morphisms-functors The dual of sequence34563456Safe+,-;=>?AFPQSTUV]7morphisms-functors rWhen providing a new instance, you should ensure it satisfies the one law: * Interchange: t >>= f = join (f <$> t)8morphisms-functorsInfix and flipped version of :, the dual of =>>9morphisms-functorsFlipped version of 8, the dual of <<=:morphisms-functorsPrefix and flipped version of 8, the dual of extend;morphisms-functors$Merge effects/contexts, the dual of  duplicate<morphisms-functors!Left-to-right Kleisli composition=morphisms-functors!Right-to-left Kleisli composition78;9:=<78;9:=<8191<1=1Safe+,-;=>?AFPQSTUVcç>morphisms-functors ‡Let f :: (Pointable t, Bindable t) => a -> t a Let g :: (Pointable t, Bindable t) => a -> t a Let h :: (Pointable t, Bindable t) => t a ÌWhen using this constraint, you should ensure it satisfies the three laws: * Left identity: point a >>= f "a f a * Right identity: h >>= point "a h * Associativity: h >>= (\x -> f x >>= g) "a (h >>= f) >>= g>>Safe+,-;=>?AFPQSTUVj›@morphisms-functors ÿWhen providing a new instance, you should ensure it satisfies the four laws: * Left adjunction identity: phi counit "a identity * Right adjunction identity: psi unit "a identity * Left adjunction interchange: phi f "a comap f . eta * Right adjunction interchange: psi f "a epsilon . comap fAmorphisms-functorsLeft adjunctionBmorphisms-functorsRight adjunction?@ABCD@ABCD?Safe+,-;=>?AFPQSTUVk‰E  " !#$%&'()*+,.-01/2345678;9:=<>?@ABCDSafe+,-;=>?AFPQSTUVm[EFGEFGSafe+,-;=>?AFPQSTUVn1RSTRSTSafe+,-;=>?AFPQSTUVocdecdeSafe+,-;=>?AFPQSTUVoÝ|}|}Safe+,-;=>?AFPQSTUVp«‚‚Safe+,-;=>?AFPQSTUVqyŒŒSafe+,-;=>?AFPQSTUVrGŽŽSafe+,-;=>?AFPQSTUVsEFGRSTcde|}‚ŒŽž !"#$%&'()*+,-./012345678 9 : ; < = > ? @ A B C D E F G H I J K L MNOPQRSTUVWXYZ[\]^_`aabcdefghijklmmnopqrstuvwxyz{|}}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”••–—˜™™š›œžŸ ¡¢£¤¥¥¦§¨©ª«¬­®¯°±²³´/morphisms-functors-0.1.5-5JTOLjZkfjlHNazzQAuTRHControl.Functor.ContravariantControl.Functor.Covariant%Control.Functor.Covariant.Alternative%Control.Functor.Covariant.Applicative#Control.Functor.Covariant.Exclusive%Control.Functor.Covariant.Extractable#Control.Functor.Covariant.Pointable1Control.Functor.Covariant.Transformation.Liftable2Control.Functor.Covariant.Transformation.LowerableControl.Functor.InvariantControl.Variance1Control.Functor.Covariant.Composition.Traversable0Control.Functor.Covariant.Composition.Extendable-Control.Functor.Covariant.Composition.Comonad2Control.Functor.Covariant.Composition.Distributive.Control.Functor.Covariant.Composition.Bindable+Control.Functor.Covariant.Composition.Monad-Control.Functor.Covariant.Composition.AdjointData.Functor.Composition.TData.Functor.Composition.TTData.Functor.Composition.TTTData.Functor.ConstantData.Functor.Identity#Data.Functor.Transformation.NaturalData.Functor.YonedaControl.Functor Data.Functor Contravariant>$< contramap>$$<full Covariant<$>comap<$$>void Alternative<+>alter Applicative<*>apply*><*forever Exclusive exclusive Extractableextract PointablepointLiftablelift Lowerablelower Invariant<$<invmap>$>:.:VariantCoContra Traversable->>traversesequence Extendable=>><<=extend duplicate=<==>=Comonad Distributive>>-collect distributeBindable>>==<<bindjoin>=><=<Monad-|AdjointphipsietaepsilonTt$fExtractableT $fPointableT $fExclusiveT$fAlternativeT$fApplicativeT $fCovariantT$fContravariantT$fContravariantT0 $fCovariantT0 $fAdjointTTTTtt$fExtractableTT $fPointableTT $fExclusiveTT$fAlternativeTT$fApplicativeTT$fContravariantTT $fCovariantTT$fCovariantTT0$fCovariantTT1$fContravariantTT0$fContravariantTT1$fContravariantTT2$fCovariantTT2 $fAdjointTTTTTTTttt$fExtractableTTT$fPointableTTT$fExclusiveTTT$fAlternativeTTT$fApplicativeTTT$fCovariantTTT$fContravariantTTT$fContravariantTTT0$fContravariantTTT1$fContravariantTTT2$fCovariantTTT0$fCovariantTTT1$fCovariantTTT2$fCovariantTTT3$fCovariantTTT4$fCovariantTTT5$fContravariantTTT3$fContravariantTTT4$fContravariantTTT5$fContravariantTTT6$fCovariantTTT6$fAdjointTTTTTTConstant$fTraversableConstant$fContravariantConstant$fCovariantConstantIdentity$fAdjointIdentityIdentity$fExtendableIdentity$fBindableIdentity$fDistributiveIdentity$fTraversableIdentity$fExtractableIdentity$fPointableIdentity$fApplicativeIdentity$fCovariantIdentity~>NaturalYonedayoneda$fExtendableYoneda$fBindableYoneda$fAdjointYonedaYoneda$fDistributiveYoneda$fTraversableYoneda$fLowerableYoneda$fLiftableYoneda$fExtractableYoneda$fPointableYoneda$fExclusiveYoneda$fAlternativeYoneda$fApplicativeYoneda$fCovariantYoneda