{-# OPTIONS_GHC -w #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
{-# LANGUAGE OverloadedStrings #-}

-- | Parsing logic for the Morte language

module Morte.Parser (
    -- * Parser
    exprFromText,

    -- * Errors
    prettyParseError,
    ParseError(..),
    ParseMessage(..)
    ) where

import Control.Monad.Trans.Error (ErrorT, Error(..), throwError, runErrorT)
import Control.Monad.Trans.State.Strict (State, runState)
import Data.Functor.Identity (Identity, runIdentity)
import Data.Monoid (mempty, (<>))
import Data.Text.Lazy (Text)
import qualified Data.Text.Lazy as Text
import qualified Data.Text.Lazy.Builder as Builder
import Data.Text.Lazy.Builder.Int (decimal)
import Lens.Family.Stock (_1, _2)
import Lens.Family.State.Strict ((.=), use, zoom)
import Morte.Core (Var(..), Const(..), Expr(..))
import qualified Morte.Lexer as Lexer
import Morte.Lexer (Token, Position)
import Pipes (Producer, hoist, lift, next)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts

-- parser produced by Happy Version 1.18.9

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: (Expr) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> (Expr)
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: (Var) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> (Var)
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: (Expr) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> (Expr)
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyIn7 :: (Expr) -> (HappyAbsSyn )
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> (Expr)
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut7 #-}
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x01\x00\x0e\x00\x00\x00\x0e\x00\x00\x00\x01\x00\x00\x00\x00\x00\x3b\x00\x37\x00\x07\x00\x3c\x00\x3a\x00\x32\x00\x32\x00\x00\x00\x01\x00\x2c\x00\x38\x00\x00\x00\x00\x00\x00\x00\x36\x00\x35\x00\x01\x00\x01\x00\x34\x00\x33\x00\x10\x00\xfa\xff\x01\x00\x01\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x31\x00\x02\x00\x00\x00\x0f\x00\x00\x00\x2d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x15\x00\x14\x00\x00\x00\x29\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x21\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x00\x19\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\xf6\xff\x00\x00\xf7\xff\x00\x00\xf5\xff\xf4\xff\xf9\xff\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf8\xff\x00\x00\x00\x00\x00\x00\xf3\xff\xfa\xff\xfb\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xfd\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x07\x00\x01\x00\x01\x00\x02\x00\x03\x00\x05\x00\x06\x00\x01\x00\x08\x00\x09\x00\x0a\x00\x05\x00\x06\x00\x07\x00\x01\x00\x01\x00\x0a\x00\x03\x00\x05\x00\x06\x00\x01\x00\x01\x00\x07\x00\x0a\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x02\x00\x0b\x00\x03\x00\x03\x00\x02\x00\x01\x00\x0a\x00\x01\x00\xff\xff\x04\x00\xff\xff\xff\xff\xff\xff\x0c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x1f\x00\x06\x00\x02\x00\x03\x00\x04\x00\x07\x00\x08\x00\x06\x00\x0c\x00\x0d\x00\x09\x00\x07\x00\x08\x00\x11\x00\x06\x00\x02\x00\x09\x00\x0f\x00\x07\x00\x08\x00\x16\x00\x17\x00\x20\x00\x09\x00\x20\x00\x02\x00\x0a\x00\x04\x00\x21\x00\x02\x00\x0a\x00\x04\x00\x1a\x00\x02\x00\x0a\x00\x04\x00\x1b\x00\x02\x00\x0a\x00\x04\x00\x15\x00\x02\x00\x0a\x00\x04\x00\x12\x00\x02\x00\x0a\x00\x04\x00\x09\x00\x02\x00\x0a\x00\x04\x00\x1d\x00\x1e\x00\x15\x00\x19\x00\x1a\x00\x14\x00\x0e\x00\x09\x00\x0f\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 12) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9),
	(10 , happyReduce_10),
	(11 , happyReduce_11),
	(12 , happyReduce_12)
	]

happy_n_terms = 13 :: Int
happy_n_nonterms = 4 :: Int

happyReduce_1 = happySpecReduce_1  0# happyReduction_1
happyReduction_1 happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (happy_var_1
	)}

happyReduce_2 = happyReduce 8# 0# happyReduction_2
happyReduction_2 (happy_x_8 `HappyStk`
	happy_x_7 `HappyStk`
	happy_x_6 `HappyStk`
	happy_x_5 `HappyStk`
	happy_x_4 `HappyStk`
	happy_x_3 `HappyStk`
	happy_x_2 `HappyStk`
	happy_x_1 `HappyStk`
	happyRest)
	 = case happyOut5 happy_x_3 of { happy_var_3 -> 
	case happyOut4 happy_x_5 of { happy_var_5 -> 
	case happyOut4 happy_x_8 of { happy_var_8 -> 
	happyIn4
		 (Lam happy_var_3 happy_var_5 happy_var_8
	) `HappyStk` happyRest}}}

happyReduce_3 = happyReduce 8# 0# happyReduction_3
happyReduction_3 (happy_x_8 `HappyStk`
	happy_x_7 `HappyStk`
	happy_x_6 `HappyStk`
	happy_x_5 `HappyStk`
	happy_x_4 `HappyStk`
	happy_x_3 `HappyStk`
	happy_x_2 `HappyStk`
	happy_x_1 `HappyStk`
	happyRest)
	 = case happyOut5 happy_x_3 of { happy_var_3 -> 
	case happyOut4 happy_x_5 of { happy_var_5 -> 
	case happyOut4 happy_x_8 of { happy_var_8 -> 
	happyIn4
		 (Pi  happy_var_3 happy_var_5 happy_var_8
	) `HappyStk` happyRest}}}

happyReduce_4 = happySpecReduce_3  0# happyReduction_4
happyReduction_4 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (Pi "_" happy_var_1 happy_var_3
	)}}

happyReduce_5 = happySpecReduce_3  1# happyReduction_5
happyReduction_5 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOutTok happy_x_1 of { (Lexer.Label happy_var_1) -> 
	case happyOutTok happy_x_3 of { (Lexer.Number happy_var_3) -> 
	happyIn5
		 (V happy_var_1 happy_var_3
	)}}

happyReduce_6 = happySpecReduce_1  1# happyReduction_6
happyReduction_6 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Lexer.Label happy_var_1) -> 
	happyIn5
		 (V happy_var_1 0
	)}

happyReduce_7 = happySpecReduce_2  2# happyReduction_7
happyReduction_7 happy_x_2
	happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	case happyOut7 happy_x_2 of { happy_var_2 -> 
	happyIn6
		 (App happy_var_1 happy_var_2
	)}}

happyReduce_8 = happySpecReduce_1  2# happyReduction_8
happyReduction_8 happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 (happy_var_1
	)}

happyReduce_9 = happySpecReduce_1  3# happyReduction_9
happyReduction_9 happy_x_1
	 =  case happyOut5 happy_x_1 of { happy_var_1 -> 
	happyIn7
		 (Var happy_var_1
	)}

happyReduce_10 = happySpecReduce_1  3# happyReduction_10
happyReduction_10 happy_x_1
	 =  happyIn7
		 (Const Star
	)

happyReduce_11 = happySpecReduce_1  3# happyReduction_11
happyReduction_11 happy_x_1
	 =  happyIn7
		 (Const Box
	)

happyReduce_12 = happySpecReduce_3  3# happyReduction_12
happyReduction_12 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn7
		 (happy_var_2
	)}

happyNewToken action sts stk
	= lexer(\tk -> 
	let cont i = happyDoAction i tk action sts stk in
	case tk of {
	Lexer.EOF -> happyDoAction 12# tk action sts stk;
	Lexer.OpenParen -> cont 1#;
	Lexer.CloseParen -> cont 2#;
	Lexer.Colon -> cont 3#;
	Lexer.At -> cont 4#;
	Lexer.Star -> cont 5#;
	Lexer.Box -> cont 6#;
	Lexer.Arrow -> cont 7#;
	Lexer.Lambda -> cont 8#;
	Lexer.Pi -> cont 9#;
	Lexer.Label happy_dollar_dollar -> cont 10#;
	Lexer.Number happy_dollar_dollar -> cont 11#;
	_ -> happyError' tk
	})

happyError_ 12# tk = happyError' tk
happyError_ _ tk = happyError' tk

happyThen :: () => Lex a -> (a -> Lex b) -> Lex b
happyThen = (>>=)
happyReturn :: () => a -> Lex a
happyReturn = (return)
happyThen1 = happyThen
happyReturn1 :: () => a -> Lex a
happyReturn1 = happyReturn
happyError' :: () => (Token) -> Lex a
happyError' tk = parseError tk

parseExpr = happySomeParser where
  happySomeParser = happyThen (happyParse 0#) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


-- | The specific parsing error
data ParseMessage
    -- | Lexing failed, returning the remainder of the text
    = Lexing Text
    -- | Parsing failed, returning the invalid token
    | Parsing Token
    deriving (Show)

{- This is purely to satisfy the unnecessary `Error` constraint for `ErrorT`

    I will switch to `ExceptT` when the Haskell Platform incorporates
    `transformers-0.4.*`.
-}
instance Error ParseMessage where

type Status = (Position, Producer Token (State Position) (Maybe Text))

type Lex = ErrorT ParseMessage (State Status)

-- To avoid an explicit @mmorph@ dependency
generalize :: Monad m => Identity a -> m a
generalize = return . runIdentity

lexer :: (Token -> Lex a) -> Lex a
lexer k = do
    x <- lift (do
        p <- use _2
        hoist generalize (zoom _1 (next p)) )
    case x of
        Left ml           -> case ml of
            Nothing -> k Lexer.EOF
            Just le -> throwError (Lexing le)
        Right (token, p') -> do
            lift (_2 .= p')
            k token

parseError :: Token -> Lex a
parseError token = throwError (Parsing token)

-- | Parse an `Expr` from `Text` or return a `ParseError` if parsing fails
exprFromText :: Text -> Either ParseError Expr
exprFromText text = case runState (runErrorT parseExpr) initialStatus of
    (x, (position, _)) -> case x of
        Left  e    -> Left (ParseError position e)
        Right expr -> Right expr
  where
    initialStatus = (Lexer.P 1 0, Lexer.lexExpr text)

-- | Structured type for parsing errors
data ParseError = ParseError
    { position     :: Position
    , parseMessage :: ParseMessage
    } deriving (Show)

-- | Pretty-print a `ParseError`
prettyParseError :: ParseError -> Text
prettyParseError (ParseError (Lexer.P l c) e) = Builder.toLazyText (
        "Line:   " <> decimal l <> "\n"
    <>  "Column: " <> decimal c <> "\n"
    <>  "\n"
    <>  case e of
        Lexing r  ->
                "Lexing: \"" <> Builder.fromLazyText remainder <> dots <> "\"\n"
            <>  "\n"
            <>  "Error: Lexing failed\n"
          where
            remainder = Text.takeWhile (/= '\n') (Text.take 64 r)
            dots      = if Text.length r > 64 then "..." else mempty
        Parsing t ->
                "Parsing: " <> Builder.fromString (show t) <> "\n"
            <>  "\n"
            <>  "Error: Parsing failed\n" )
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 

{-# LINE 30 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList





{-# LINE 51 "templates/GenericTemplate.hs" #-}

{-# LINE 61 "templates/GenericTemplate.hs" #-}

{-# LINE 70 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
	happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
	(happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
	= {- nothing -}


	  case action of
		0#		  -> {- nothing -}
				     happyFail i tk st
		-1# 	  -> {- nothing -}
				     happyAccept i tk st
		n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

				     (happyReduceArr Happy_Data_Array.! rule) i tk st
				     where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
		n		  -> {- nothing -}


				     happyShift new_state i tk st
				     where (new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where (off)    = indexShortOffAddr happyActOffsets st
         (off_i)  = (off Happy_GHC_Exts.+# i)
	 check  = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#))
			then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==#  i)
			else False
         (action)
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st

{-# LINE 130 "templates/GenericTemplate.hs" #-}


indexShortOffAddr (HappyA# arr) off =
	Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 163 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
	 sts1@((HappyCons (st1@(action)) (_))) ->
        	let r = fn stk in  -- it doesn't hurt to always seq here...
       		happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
        happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
       where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
       happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
       where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

             (off) = indexShortOffAddr happyGotoOffsets st1
             (off_i) = (off Happy_GHC_Exts.+# nt)
             (new_state) = indexShortOffAddr happyTable off_i




happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where (off) = indexShortOffAddr happyGotoOffsets st
         (off_i) = (off Happy_GHC_Exts.+# nt)
         (new_state) = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
     let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--	trace "failing" $ 
        happyError_ i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
						(saved_tok `HappyStk` _ `HappyStk` stk) =
--	trace ("discarding state, depth " ++ show (length stk))  $
	happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
	happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--	happySeq = happyDoSeq
-- otherwise it emits
-- 	happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.