{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveDataTypeable #-} -- | Parsing logic for the Morte language module Morte.Parser ( -- * Parser exprFromText, -- * Errors ParseError(..), ParseMessage(..) ) where import Control.Exception (Exception) import Control.Monad.Trans.Error (ErrorT, Error(..), throwError, runErrorT) import Control.Monad.Trans.State.Strict (State, runState) import Data.Functor.Identity (Identity, runIdentity) import Data.Monoid (mempty, (<>)) import Data.Text.Buildable (Buildable(..)) import Data.Text.Lazy (Text) import qualified Data.Text.Lazy as Text import Data.Text.Lazy.Builder (toLazyText) import Data.Typeable (Typeable) import Lens.Family.Stock (_1, _2) import Lens.Family.State.Strict ((.=), use, zoom) import Morte.Core (Var(..), Const(..), Path(..), Expr(..)) import qualified Morte.Lexer as Lexer import Morte.Lexer (Token, Position) import Pipes (Producer, hoist, lift, next) import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) -- parser produced by Happy Version 1.19.4 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: (Expr Path) -> (HappyAbsSyn ) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn ) -> (Expr Path) happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyIn5 :: (Var) -> (HappyAbsSyn ) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn ) -> (Var) happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: (Expr Path) -> (HappyAbsSyn ) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn ) -> (Expr Path) happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: (Expr Path) -> (HappyAbsSyn ) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn ) -> (Expr Path) happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: (Path) -> (HappyAbsSyn ) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn ) -> (Path) happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyInTok :: (Token) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x01\x00\x15\x00\x00\x00\x15\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x48\x00\x00\x00\x00\x00\x3e\x00\x0b\x00\x4a\x00\x49\x00\x16\x00\x14\x00\x00\x00\x01\x00\x09\x00\x11\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x05\x00\x01\x00\x01\x00\x04\x00\x02\x00\xfc\xff\xfa\xff\x01\x00\x01\x00\x00\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x41\x00\x45\x00\x00\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x37\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x00\x2d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x23\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\xf6\xff\x00\x00\xf7\xff\xf3\xff\x00\x00\xf5\xff\xf4\xff\xf9\xff\xf1\xff\xf0\xff\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf8\xff\x00\x00\x00\x00\x00\x00\xf2\xff\xfa\xff\xfb\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xfd\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x07\x00\x01\x00\x07\x00\x02\x00\x04\x00\x02\x00\x06\x00\x03\x00\x08\x00\x09\x00\x0a\x00\x01\x00\x0c\x00\x0d\x00\x04\x00\x03\x00\x06\x00\x07\x00\x02\x00\x0b\x00\x0a\x00\x01\x00\x0c\x00\x0d\x00\x04\x00\x01\x00\x06\x00\x03\x00\x04\x00\x0a\x00\x0a\x00\x0a\x00\x0c\x00\x0d\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x01\x00\x02\x00\x03\x00\x04\x00\x01\x00\x01\x00\x0e\x00\x05\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x22\x00\x07\x00\x23\x00\x20\x00\x08\x00\x21\x00\x09\x00\x1c\x00\x0f\x00\x10\x00\x0a\x00\x07\x00\x0b\x00\x0c\x00\x08\x00\x1d\x00\x09\x00\x14\x00\x17\x00\x18\x00\x0a\x00\x07\x00\x0b\x00\x0c\x00\x08\x00\x02\x00\x09\x00\x12\x00\x05\x00\x1a\x00\x0a\x00\x1b\x00\x0b\x00\x0c\x00\x23\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x24\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x1d\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x1e\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x18\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x15\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x0c\x00\x02\x00\x0d\x00\x04\x00\x05\x00\x02\x00\x03\x00\x04\x00\x05\x00\x11\x00\x12\x00\xff\xff\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 15) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15) ] happy_n_terms = 15 :: Int happy_n_nonterms = 5 :: Int happyReduce_1 = happySpecReduce_1 0# happyReduction_1 happyReduction_1 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> happyIn4 (happy_var_1 )} happyReduce_2 = happyReduce 8# 0# happyReduction_2 happyReduction_2 (happy_x_8 `HappyStk` happy_x_7 `HappyStk` happy_x_6 `HappyStk` happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_3 of { (Lexer.Label happy_var_3) -> case happyOut4 happy_x_5 of { happy_var_5 -> case happyOut4 happy_x_8 of { happy_var_8 -> happyIn4 (Lam happy_var_3 happy_var_5 happy_var_8 ) `HappyStk` happyRest}}} happyReduce_3 = happyReduce 8# 0# happyReduction_3 happyReduction_3 (happy_x_8 `HappyStk` happy_x_7 `HappyStk` happy_x_6 `HappyStk` happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_3 of { (Lexer.Label happy_var_3) -> case happyOut4 happy_x_5 of { happy_var_5 -> case happyOut4 happy_x_8 of { happy_var_8 -> happyIn4 (Pi happy_var_3 happy_var_5 happy_var_8 ) `HappyStk` happyRest}}} happyReduce_4 = happySpecReduce_3 0# happyReduction_4 happyReduction_4 happy_x_3 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 (Pi "_" happy_var_1 happy_var_3 )}} happyReduce_5 = happySpecReduce_3 1# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { (Lexer.Label happy_var_1) -> case happyOutTok happy_x_3 of { (Lexer.Number happy_var_3) -> happyIn5 (V happy_var_1 happy_var_3 )}} happyReduce_6 = happySpecReduce_1 1# happyReduction_6 happyReduction_6 happy_x_1 = case happyOutTok happy_x_1 of { (Lexer.Label happy_var_1) -> happyIn5 (V happy_var_1 0 )} happyReduce_7 = happySpecReduce_2 2# happyReduction_7 happyReduction_7 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> case happyOut7 happy_x_2 of { happy_var_2 -> happyIn6 (App happy_var_1 happy_var_2 )}} happyReduce_8 = happySpecReduce_1 2# happyReduction_8 happyReduction_8 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> happyIn6 (happy_var_1 )} happyReduce_9 = happySpecReduce_1 3# happyReduction_9 happyReduction_9 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> happyIn7 (Var happy_var_1 )} happyReduce_10 = happySpecReduce_1 3# happyReduction_10 happyReduction_10 happy_x_1 = happyIn7 (Const Star ) happyReduce_11 = happySpecReduce_1 3# happyReduction_11 happyReduction_11 happy_x_1 = happyIn7 (Const Box ) happyReduce_12 = happySpecReduce_1 3# happyReduction_12 happyReduction_12 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn7 (Import happy_var_1 )} happyReduce_13 = happySpecReduce_3 3# happyReduction_13 happyReduction_13 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn7 (happy_var_2 )} happyReduce_14 = happySpecReduce_1 4# happyReduction_14 happyReduction_14 happy_x_1 = case happyOutTok happy_x_1 of { (Lexer.File happy_var_1) -> happyIn8 (File happy_var_1 )} happyReduce_15 = happySpecReduce_1 4# happyReduction_15 happyReduction_15 happy_x_1 = case happyOutTok happy_x_1 of { (Lexer.URL happy_var_1) -> happyIn8 (URL happy_var_1 )} happyNewToken action sts stk = lexer(\tk -> let cont i = happyDoAction i tk action sts stk in case tk of { Lexer.EOF -> happyDoAction 14# tk action sts stk; Lexer.OpenParen -> cont 1#; Lexer.CloseParen -> cont 2#; Lexer.Colon -> cont 3#; Lexer.Star -> cont 4#; Lexer.At -> cont 5#; Lexer.Box -> cont 6#; Lexer.Arrow -> cont 7#; Lexer.Lambda -> cont 8#; Lexer.Pi -> cont 9#; Lexer.Label happy_dollar_dollar -> cont 10#; Lexer.Number happy_dollar_dollar -> cont 11#; Lexer.File happy_dollar_dollar -> cont 12#; Lexer.URL happy_dollar_dollar -> cont 13#; _ -> happyError' tk }) happyError_ 14# tk = happyError' tk happyError_ _ tk = happyError' tk happyThen :: () => Lex a -> (a -> Lex b) -> Lex b happyThen = (>>=) happyReturn :: () => a -> Lex a happyReturn = (return) happyThen1 = happyThen happyReturn1 :: () => a -> Lex a happyReturn1 = happyReturn happyError' :: () => (Token) -> Lex a happyError' tk = parseError tk parseExpr = happySomeParser where happySomeParser = happyThen (happyParse 0#) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq -- | The specific parsing error data ParseMessage -- | Lexing failed, returning the remainder of the text = Lexing Text -- | Parsing failed, returning the invalid token | Parsing Token deriving (Show) {- This is purely to satisfy the unnecessary `Error` constraint for `ErrorT` I will switch to `ExceptT` when the Haskell Platform incorporates `transformers-0.4.*`. -} instance Error ParseMessage where type Status = (Position, Producer Token (State Position) (Maybe Text)) type Lex = ErrorT ParseMessage (State Status) -- To avoid an explicit @mmorph@ dependency generalize :: Monad m => Identity a -> m a generalize = return . runIdentity lexer :: (Token -> Lex a) -> Lex a lexer k = do x <- lift (do p <- use _2 hoist generalize (zoom _1 (next p)) ) case x of Left ml -> case ml of Nothing -> k Lexer.EOF Just le -> throwError (Lexing le) Right (token, p') -> do lift (_2 .= p') k token parseError :: Token -> Lex a parseError token = throwError (Parsing token) -- | Parse an `Expr` from `Text` or return a `ParseError` if parsing fails exprFromText :: Text -> Either ParseError (Expr Path) exprFromText text = case runState (runErrorT parseExpr) initialStatus of (x, (position, _)) -> case x of Left e -> Left (ParseError position e) Right expr -> Right expr where initialStatus = (Lexer.P 1 0, Lexer.lexExpr text) -- | Structured type for parsing errors data ParseError = ParseError { position :: Position , parseMessage :: ParseMessage } deriving (Typeable) instance Show ParseError where show = Text.unpack . toLazyText . build instance Exception ParseError instance Buildable ParseError where build (ParseError (Lexer.P l c) e) = "\n" <> "Line: " <> build l <> "\n" <> "Column: " <> build c <> "\n" <> "\n" <> case e of Lexing r -> "Lexing: \"" <> build remainder <> dots <> "\"\n" <> "\n" <> "Error: Lexing failed\n" where remainder = Text.takeWhile (/= '\n') (Text.take 64 r) dots = if Text.length r > 64 then "..." else mempty Parsing t -> "Parsing: " <> build (show t) <> "\n" <> "\n" <> "Error: Parsing failed\n" {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.