{-# LANGUAGE UndecidableInstances #-} -- Search for UndecidableInstances to see why this is needed ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.State.Strict -- Copyright : (c) Andy Gill 2001, -- (c) Oregon Graduate Institute of Science and Technology, 2001 -- License : BSD-style (see the file libraries/base/LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : non-portable (multi-param classes, functional dependencies) -- -- Strict state monads. -- -- This module is inspired by the paper -- /Functional Programming with Overloading and -- Higher-Order Polymorphism/, -- Mark P Jones (<http://web.cecs.pdx.edu/~mpj/>) -- Advanced School of Functional Programming, 1995. -- -- See below for examples. ----------------------------------------------------------------------------- module Control.Monad.State.Strict ( module Control.Monad.State.Class, -- * The State Monad State(..), evalState, execState, mapState, withState, -- * The StateT Monad StateT(..), evalStateT, execStateT, mapStateT, withStateT, module Control.Monad, module Control.Monad.Fix, module Control.Monad.Trans, -- * Examples -- $examples ) where import Control.Monad import Control.Monad.Cont.Class import Control.Monad.Error.Class import Control.Monad.Fix import Control.Monad.Reader.Class import Control.Monad.State.Class import Control.Monad.Trans import Control.Monad.Writer.Class -- --------------------------------------------------------------------------- -- | A parameterizable state monad where /s/ is the type of the state -- to carry and /a/ is the type of the /return value/. newtype State s a = State { runState :: s -> (a, s) } -- |Evaluate this state monad with the given initial state,throwing -- away the final state. Very much like @fst@ composed with -- @runstate@. evalState :: State s a -- ^The state to evaluate -> s -- ^An initial value -> a -- ^The return value of the state application evalState m s = fst (runState m s) -- |Execute this state and return the new state, throwing away the -- return value. Very much like @snd@ composed with -- @runstate@. execState :: State s a -- ^The state to evaluate -> s -- ^An initial value -> s -- ^The new state execState m s = snd (runState m s) -- |Map a stateful computation from one (return value, state) pair to -- another. For instance, to convert numberTree from a function that -- returns a tree to a function that returns the sum of the numbered -- tree (see the Examples section for numberTree and sumTree) you may -- write: -- -- > sumNumberedTree :: (Eq a) => Tree a -> State (Table a) Int -- > sumNumberedTree = mapState (\ (t, tab) -> (sumTree t, tab)) . numberTree mapState :: ((a, s) -> (b, s)) -> State s a -> State s b mapState f m = State $ f . runState m -- |Apply this function to this state and return the resulting state. withState :: (s -> s) -> State s a -> State s a withState f m = State $ runState m . f instance Functor (State s) where fmap f m = State $ \s -> case runState m s of (a, s') -> (f a, s') instance Monad (State s) where return a = State $ \s -> (a, s) m >>= k = State $ \s -> case runState m s of (a, s') -> runState (k a) s' instance MonadFix (State s) where mfix f = State $ \s -> let (a, s') = runState (f a) s in (a, s') instance MonadState s (State s) where get = State $ \s -> (s, s) put s = State $ \_ -> ((), s) -- --------------------------------------------------------------------------- -- | A parameterizable state monad for encapsulating an inner -- monad. -- -- The StateT Monad structure is parameterized over two things: -- -- * s - The state. -- -- * m - The inner monad. -- -- Here are some examples of use: -- -- (Parser from ParseLib with Hugs) -- -- > type Parser a = StateT String [] a -- > ==> StateT (String -> [(a,String)]) -- -- For example, item can be written as: -- -- > item = do (x:xs) <- get -- > put xs -- > return x -- > -- > type BoringState s a = StateT s Indentity a -- > ==> StateT (s -> Identity (a,s)) -- > -- > type StateWithIO s a = StateT s IO a -- > ==> StateT (s -> IO (a,s)) -- > -- > type StateWithErr s a = StateT s Maybe a -- > ==> StateT (s -> Maybe (a,s)) newtype StateT s m a = StateT { runStateT :: s -> m (a,s) } -- |Similar to 'evalState' evalStateT :: (Monad m) => StateT s m a -> s -> m a evalStateT m s = do (a, _) <- runStateT m s return a -- |Similar to 'execState' execStateT :: (Monad m) => StateT s m a -> s -> m s execStateT m s = do (_, s') <- runStateT m s return s' -- |Similar to 'mapState' mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b mapStateT f m = StateT $ f . runStateT m -- |Similar to 'withState' withStateT :: (s -> s) -> StateT s m a -> StateT s m a withStateT f m = StateT $ runStateT m . f instance (Monad m) => Functor (StateT s m) where fmap f m = StateT $ \s -> do (x, s') <- runStateT m s return (f x, s') instance (Monad m) => Monad (StateT s m) where return a = StateT $ \s -> return (a, s) m >>= k = StateT $ \s -> do (a, s') <- runStateT m s runStateT (k a) s' fail str = StateT $ \_ -> fail str instance (MonadPlus m) => MonadPlus (StateT s m) where mzero = StateT $ \_ -> mzero m `mplus` n = StateT $ \s -> runStateT m s `mplus` runStateT n s instance (MonadFix m) => MonadFix (StateT s m) where mfix f = StateT $ \s -> mfix $ \ ~(a, _) -> runStateT (f a) s instance (Monad m) => MonadState s (StateT s m) where get = StateT $ \s -> return (s, s) put s = StateT $ \_ -> return ((), s) -- --------------------------------------------------------------------------- -- Instances for other mtl transformers instance MonadTrans (StateT s) where lift m = StateT $ \s -> do a <- m return (a, s) instance (MonadIO m) => MonadIO (StateT s m) where liftIO = lift . liftIO instance (MonadCont m) => MonadCont (StateT s m) where callCC f = StateT $ \s -> callCC $ \c -> runStateT (f (\a -> StateT $ \s' -> c (a, s'))) s instance (MonadError e m) => MonadError e (StateT s m) where throwError = lift . throwError m `catchError` h = StateT $ \s -> runStateT m s `catchError` \e -> runStateT (h e) s -- Needs UndecidableInstances instance (MonadReader r m) => MonadReader r (StateT s m) where ask = lift ask local f m = StateT $ \s -> local f (runStateT m s) -- Needs UndecidableInstances instance (MonadWriter w m) => MonadWriter w (StateT s m) where tell = lift . tell listen m = StateT $ \s -> do ((a, s'), w) <- listen (runStateT m s) return ((a, w), s') pass m = StateT $ \s -> pass $ do ((a, f), s') <- runStateT m s return ((a, s'), f) -- --------------------------------------------------------------------------- -- $examples -- A function to increment a counter. Taken from the paper -- /Generalising Monads to Arrows/, John -- Hughes (<http://www.math.chalmers.se/~rjmh/>), November 1998: -- -- > tick :: State Int Int -- > tick = do n <- get -- > put (n+1) -- > return n -- -- Add one to the given number using the state monad: -- -- > plusOne :: Int -> Int -- > plusOne n = execState tick n -- -- A contrived addition example. Works only with positive numbers: -- -- > plus :: Int -> Int -> Int -- > plus n x = execState (sequence $ replicate n tick) x -- -- An example from /The Craft of Functional Programming/, Simon -- Thompson (<http://www.cs.kent.ac.uk/people/staff/sjt/>), -- Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a -- tree of integers in which the original elements are replaced by -- natural numbers, starting from 0. The same element has to be -- replaced by the same number at every occurrence, and when we meet -- an as-yet-unvisited element we have to find a \'new\' number to match -- it with:\" -- -- > data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq) -- > type Table a = [a] -- -- > numberTree :: Eq a => Tree a -> State (Table a) (Tree Int) -- > numberTree Nil = return Nil -- > numberTree (Node x t1 t2) -- > = do num <- numberNode x -- > nt1 <- numberTree t1 -- > nt2 <- numberTree t2 -- > return (Node num nt1 nt2) -- > where -- > numberNode :: Eq a => a -> State (Table a) Int -- > numberNode x -- > = do table <- get -- > (newTable, newPos) <- return (nNode x table) -- > put newTable -- > return newPos -- > nNode:: (Eq a) => a -> Table a -> (Table a, Int) -- > nNode x table -- > = case (findIndexInList (== x) table) of -- > Nothing -> (table ++ [x], length table) -- > Just i -> (table, i) -- > findIndexInList :: (a -> Bool) -> [a] -> Maybe Int -- > findIndexInList = findIndexInListHelp 0 -- > findIndexInListHelp _ _ [] = Nothing -- > findIndexInListHelp count f (h:t) -- > = if (f h) -- > then Just count -- > else findIndexInListHelp (count+1) f t -- -- numTree applies numberTree with an initial state: -- -- > numTree :: (Eq a) => Tree a -> Tree Int -- > numTree t = evalState (numberTree t) [] -- -- > testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil -- > numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil -- -- sumTree is a little helper function that does not use the State monad: -- -- > sumTree :: (Num a) => Tree a -> a -- > sumTree Nil = 0 -- > sumTree (Node e t1 t2) = e + (sumTree t1) + (sumTree t2)