Fo;b      !"#$%&'()*+,-./0123456789 : ; < = > ? @ A B C D E F GHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ Safe-Infered  Safe-Infered Safe-Infered Safe-Infered Techniques used to smooth the nearest values when calculating quantile functions. R2 is used by default, and the numbering convention follows the 7 use in the R programming language, as far as it goes. LThe Harrell-Davis quantile estimator based on bootstrapped order statistics iWhen rounding h, this yields the order statistic with the least expected square deviation relative to p. |The resulting quantile estimates are approximately unbiased for the expected order statistics if x is normally distributed. ELinear interpolation of the approximate medans for order statistics. _Linear interpolation of the modes for the order statistics for the uniform distribution on [0,1] eLinear interpolation of the expectations of the order statistics for the uniform distribution on [0,1] .. with knots midway through the steps as used in hydrology. This is the simplest continuous estimator that yields a correct median aLinear interpolation of the empirical distribution function. NB: does not yield a proper median. KThe observation numbered closest to Np. NB: does not yield a proper median /.. with averaging at discontinuities (default) /Inverse of the empirical distribution function         Safe-Infered Safe-Infered Safe-Infered Safe-Infered !" !" !" !" Safe-Infered$Run a calculation #$%#$%#$%#$% Safe-Infered&CAn L-Estimator represents a linear combination of order statistics 3NA common measure of how robust an L estimator is in the presence of outliers. 4f @# n_ Return a list of the coefficients that would be used by an L-Estimator for an input of length n &'()*+,-./012345678&'()*+,-./012345678&10/.-,+*)('2587634& 10/.-,+*)('2345678  Safe-Infered9:9:9:9:  Safe-Infered;<=>?;<=>?;=<>? ;=<>?  Safe-Infered@A@A@A@A  Safe-InferedBCBCBCBC  Safe-Infered DEFDEFDEF DEF Safe-InferedGHIJKGHIJKGHIJKGHIJK Safe-InferedLMNOPQLMNOPQLPONMQ LPONMQ Safe-InferedRSRSRSRS Safe-InferedTUVWTUVWTWVU TWVU Safe-InferedXYXYXYXY Safe-InferedZ[Z[Z[Z[ Safe-Infered \embedding for L-estimators dTukey' s trimean einterquartile range ginterquartile mean kterciles 1 and 2 lterciles 1 and 2 n@quantiles, with breakdown points 25%, 50%, and 25% respectively o@quantiles, with breakdown points 25%, 50%, and 25% respectively p@quantiles, with breakdown points 25%, 50%, and 25% respectively rquintiles 1 through 4 squintiles 1 through 4 tquintiles 1 through 4 uquintiles 1 through 4 \]^_`abcdefghijklmnopqrstuvw\]^_`abcdefghijklmnopqrstuvw\]^_`abcdefighjklmnpoqrutsvw\ ]^_`abcdefghijklmnopqrstuvw Safe-Inferedxyz{|}xyz{|}xyz{|}xyz{|} Safe-Infered ~~~~ non-portable (GADTs, Rank2Types) experimentalEdward Kmett <ekmett@gmail.com> Safe-Inferedh  !"#$%&'()*+,-./01349:;<=>@ALMNOPRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~h#$% !"LPONMRSZ[TWVUXY@A&10/.-,+*)('43gh  \]^_`abcdefijklmnpoqrutsvw~;=<>9:xyz{|}  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO P Q R S T U V W X Y Y Z Z [\]^_`abc=adefghijklmnopqrstuvwxyz{|}~u  multipass-0.1Data.Pass.Monoid.OrdData.Pass.L.EstimatorData.Pass.L.ByData.Pass.TransData.Pass.NamedData.Pass.Eval.NaiveData.Pass.Eval Data.Pass.LData.Pass.CallData.Pass.ThristData.Pass.Prep Data.Pass.Key Data.Pass.Fun Data.Pass.EnvData.Pass.TypeData.Pass.ClassData.Pass.CalcData.Pass.CalculationData.Pass.StepData.Pass.RobustData.Pass.AccelerantData.Pass.AcceleratedData.Pass.Util.BetaData.Pass.Util Data.PassMaxNoMaxMinNoMingetMingetMaxEstimate EstimatorHDR10R9R8R7R6R5R4R3R2R1 estimateByBybyTranstransNamedshowsFunputFunhashFunWithSaltequalFunNaivenaive@@@Evaleval@@L:+:* JackknifedTrimmed Winsorized QuantileBy NthSmallest NthLargestLScaleLMeanLTotalgetL breakdown@#callLselectMeqLordLCallcallThrist:-Nilthrist fromThristPrepprepKeyFununFunEnvemptylookupinsertconsPassPureApenvPassablepassCalcRank:&Stop CalculationcalcStepstepRobustrobust winsorizedtrimmed jackknifedlscalequantilemidhingetrimeaniqridriqmidmmediantercilet1t2quartileq1q2q3quintilequ1qu2qu3qu4 percentilepermille AccelerantmeanPass totalPass largestPass smallestPass midrangePass Acceleratedmeantotallargestsmallestmidrange $fMonoidMax $fBinaryMax $fBinaryMin $fMonoidMinBeta cumulativedensityclamp$fHashableEstimator$fBinaryEstimator$fEvalL$fNaiveL$fEqL $fHashableL$fShowL$fNamedL$fByL$fTypeable2Thrist$fHashableThrist $fEqThrist $fByThrist $fCallThrist $fNamedThrist$fCategoryThrist $fTransThrist $fShowThrist $fPrepThrist $fShowKey $fHashableKey$fEqKey$fByFun $fEvalFun $fNaiveFun $fHashableFun$fEqFun $fCallFun $fNamedFun$fTypeable2Fun $fShowFun $fTransFun $fShowEnv$fApplicativeId $fFunctorId $fEvalPass $fNaivePass$fFloatingPass$fFractionalPass $fNumPass $fPrepPass$fTypeable2Pass$fApplicativePass $fFunctorPass $fTransPass$fByPass$fPassablePass$fPassableThrist $fPassableFun $fEvalCalc $fNaiveCalc $fTransCalc$fFloatingCalc$fFractionalCalc $fNumCalc $fPrepCalc $fMonadCalc$fApplicativeCalc $fFunctorCalc$fByCalc$fCalculationCalc$fCalculationPass$fCalculationThrist$fCalculationFun $fStepCalc $fStepPass $fRobustCalc $fRobustPass $fRobustFun $fRobustL$fAcceleratedPass$fAcceleratedCalc$fAcceleratedThrist$fAcceleratedFun$fAcceleratedL