module Generics.MultiRec.FoldK where
import Generics.MultiRec.Base
import Generics.MultiRec.HFunctor
import Control.Monad hiding (foldM)
import Control.Applicative
type Algebra' s f r = forall ix. Ix s ix => s ix -> f s (K0 r) ix -> r
type Algebra s r = Algebra' s (PF s) r
type AlgebraF' s f g r = forall ix. Ix s ix => s ix -> f s (K0 r) ix -> g r
type AlgebraF s g r = AlgebraF' s (PF s) g r
fold :: (Ix s ix, HFunctor (PF s)) =>
Algebra s r -> ix -> r
fold f = f index . hmap (\ _ (I0 x) -> K0 (fold f x)) . from
foldM :: (Ix s ix, HFunctor (PF s), Monad m) =>
AlgebraF s m r -> ix -> m r
foldM f x = hmapM (\ _ (I0 x) -> liftM K0 (foldM f x)) (from x) >>= f index
type CoAlgebra' s f r = forall ix. Ix s ix => s ix -> r -> f s (K0 r) ix
type CoAlgebra s r = CoAlgebra' s (PF s) r
type CoAlgebraF' s f g r = forall ix. Ix s ix => s ix -> r -> g (f s (K0 r) ix)
type CoAlgebraF s g r = CoAlgebraF' s (PF s) g r
unfold :: (Ix s ix, HFunctor (PF s)) =>
CoAlgebra s r -> r -> ix
unfold f = to . hmap (\ _ (K0 x) -> I0 (unfold f x)) . f index
unfoldM :: (Ix s ix, HFunctor (PF s), Monad m) =>
CoAlgebraF s m r -> r -> m ix
unfoldM f x = f index x >>= liftMto . hmapM (\ _ (K0 x) -> liftM I0 (unfoldM f x))
where
liftMto :: (Monad m, Ix s ix, pfs ~ PF s) => m (pfs s I0 ix) -> m ix
liftMto = liftM to
type ParaAlgebra' s f r = forall ix. Ix s ix => s ix -> f s (K0 r) ix -> ix -> r
type ParaAlgebra s r = ParaAlgebra' s (PF s) r
type ParaAlgebraF' s f g r = forall ix. Ix s ix => s ix -> f s (K0 r) ix -> ix -> g r
type ParaAlgebraF s g r = ParaAlgebraF' s (PF s) g r
para :: (Ix s ix, HFunctor (PF s)) =>
ParaAlgebra s r -> ix -> r
para f x = f index (hmap (\ _ (I0 x) -> K0 (para f x)) (from x)) x
paraM :: (Ix s ix, HFunctor (PF s), Monad m) =>
ParaAlgebraF s m r -> ix -> m r
paraM f x = hmapM (\ _ (I0 x) -> liftM K0 (paraM f x)) (from x) >>= \ r -> f index r x
infixr 5 &
infixr :->
type AlgPart a (s :: * -> *) b ix = a s (K0 b) ix -> b
type (f :-> g) (s :: * -> *) b ix = f s b ix -> g s b ix
(&) :: (AlgPart a :-> AlgPart b :-> AlgPart (a :+: b)) s c ix
(f & g) (L x) = f x
(f & g) (R x) = g x
tag :: AlgPart a s c ix -> AlgPart (a :>: ix) s c ix'
tag f (Tag x) = f x
con :: AlgPart a s b ix -> AlgPart (C c a) s b ix
con f (C x) = f x